You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
613 lines
19 KiB
613 lines
19 KiB
//---------------------------------------------------------------------------- |
|
// Anti-Grain Geometry - Version 2.4 |
|
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) |
|
// |
|
// Permission to copy, use, modify, sell and distribute this software |
|
// is granted provided this copyright notice appears in all copies. |
|
// This software is provided "as is" without express or implied |
|
// warranty, and with no claim as to its suitability for any purpose. |
|
// |
|
//---------------------------------------------------------------------------- |
|
// Contact: mcseem@antigrain.com |
|
// mcseemagg@yahoo.com |
|
// http://www.antigrain.com |
|
//---------------------------------------------------------------------------- |
|
|
|
#include <cmath> |
|
#include "agg_curves.h" |
|
#include "agg_math.h" |
|
|
|
namespace agg |
|
{ |
|
|
|
//------------------------------------------------------------------------ |
|
// const double curve_distance_epsilon = 1e-30; |
|
const double curve_collinearity_epsilon = 1e-30; |
|
const double curve_angle_tolerance_epsilon = 0.01; |
|
enum curve_recursion_limit_e { curve_recursion_limit = 32 }; |
|
|
|
|
|
|
|
//------------------------------------------------------------------------ |
|
void curve3_inc::approximation_scale(double s) |
|
{ |
|
m_scale = s; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
double curve3_inc::approximation_scale() const |
|
{ |
|
return m_scale; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
void curve3_inc::init(double x1, double y1, |
|
double x2, double y2, |
|
double x3, double y3) |
|
{ |
|
m_start_x = x1; |
|
m_start_y = y1; |
|
m_end_x = x3; |
|
m_end_y = y3; |
|
|
|
double dx1 = x2 - x1; |
|
double dy1 = y2 - y1; |
|
double dx2 = x3 - x2; |
|
double dy2 = y3 - y2; |
|
|
|
double len = std::sqrt(dx1 * dx1 + dy1 * dy1) + std::sqrt(dx2 * dx2 + dy2 * dy2); |
|
|
|
m_num_steps = uround(len * 0.25 * m_scale); |
|
|
|
if(m_num_steps < 4) |
|
{ |
|
m_num_steps = 4; |
|
} |
|
|
|
double subdivide_step = 1.0 / m_num_steps; |
|
double subdivide_step2 = subdivide_step * subdivide_step; |
|
|
|
double tmpx = (x1 - x2 * 2.0 + x3) * subdivide_step2; |
|
double tmpy = (y1 - y2 * 2.0 + y3) * subdivide_step2; |
|
|
|
m_saved_fx = m_fx = x1; |
|
m_saved_fy = m_fy = y1; |
|
|
|
m_saved_dfx = m_dfx = tmpx + (x2 - x1) * (2.0 * subdivide_step); |
|
m_saved_dfy = m_dfy = tmpy + (y2 - y1) * (2.0 * subdivide_step); |
|
|
|
m_ddfx = tmpx * 2.0; |
|
m_ddfy = tmpy * 2.0; |
|
|
|
m_step = m_num_steps; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
void curve3_inc::rewind(unsigned) |
|
{ |
|
if(m_num_steps == 0) |
|
{ |
|
m_step = -1; |
|
return; |
|
} |
|
m_step = m_num_steps; |
|
m_fx = m_saved_fx; |
|
m_fy = m_saved_fy; |
|
m_dfx = m_saved_dfx; |
|
m_dfy = m_saved_dfy; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
unsigned curve3_inc::vertex(double* x, double* y) |
|
{ |
|
if(m_step < 0) return path_cmd_stop; |
|
if(m_step == m_num_steps) |
|
{ |
|
*x = m_start_x; |
|
*y = m_start_y; |
|
--m_step; |
|
return path_cmd_move_to; |
|
} |
|
if(m_step == 0) |
|
{ |
|
*x = m_end_x; |
|
*y = m_end_y; |
|
--m_step; |
|
return path_cmd_line_to; |
|
} |
|
m_fx += m_dfx; |
|
m_fy += m_dfy; |
|
m_dfx += m_ddfx; |
|
m_dfy += m_ddfy; |
|
*x = m_fx; |
|
*y = m_fy; |
|
--m_step; |
|
return path_cmd_line_to; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
void curve3_div::init(double x1, double y1, |
|
double x2, double y2, |
|
double x3, double y3) |
|
{ |
|
m_points.remove_all(); |
|
m_distance_tolerance_square = 0.5 / m_approximation_scale; |
|
m_distance_tolerance_square *= m_distance_tolerance_square; |
|
bezier(x1, y1, x2, y2, x3, y3); |
|
m_count = 0; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
void curve3_div::recursive_bezier(double x1, double y1, |
|
double x2, double y2, |
|
double x3, double y3, |
|
unsigned level) |
|
{ |
|
if(level > curve_recursion_limit) |
|
{ |
|
return; |
|
} |
|
|
|
// Calculate all the mid-points of the line segments |
|
//---------------------- |
|
double x12 = (x1 + x2) / 2; |
|
double y12 = (y1 + y2) / 2; |
|
double x23 = (x2 + x3) / 2; |
|
double y23 = (y2 + y3) / 2; |
|
double x123 = (x12 + x23) / 2; |
|
double y123 = (y12 + y23) / 2; |
|
|
|
double dx = x3-x1; |
|
double dy = y3-y1; |
|
double d = std::fabs(((x2 - x3) * dy - (y2 - y3) * dx)); |
|
double da; |
|
|
|
if(d > curve_collinearity_epsilon) |
|
{ |
|
// Regular case |
|
//----------------- |
|
if(d * d <= m_distance_tolerance_square * (dx*dx + dy*dy)) |
|
{ |
|
// If the curvature doesn't exceed the distance_tolerance value |
|
// we tend to finish subdivisions. |
|
//---------------------- |
|
if(m_angle_tolerance < curve_angle_tolerance_epsilon) |
|
{ |
|
m_points.add(point_d(x123, y123)); |
|
return; |
|
} |
|
|
|
// Angle & Cusp Condition |
|
//---------------------- |
|
da = std::fabs(std::atan2(y3 - y2, x3 - x2) - std::atan2(y2 - y1, x2 - x1)); |
|
if(da >= pi) da = 2*pi - da; |
|
|
|
if(da < m_angle_tolerance) |
|
{ |
|
// Finally we can stop the recursion |
|
//---------------------- |
|
m_points.add(point_d(x123, y123)); |
|
return; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// Collinear case |
|
//------------------ |
|
da = dx*dx + dy*dy; |
|
if(da == 0) |
|
{ |
|
d = calc_sq_distance(x1, y1, x2, y2); |
|
} |
|
else |
|
{ |
|
d = ((x2 - x1)*dx + (y2 - y1)*dy) / da; |
|
if(d > 0 && d < 1) |
|
{ |
|
// Simple collinear case, 1---2---3 |
|
// We can leave just two endpoints |
|
return; |
|
} |
|
if(d <= 0) d = calc_sq_distance(x2, y2, x1, y1); |
|
else if(d >= 1) d = calc_sq_distance(x2, y2, x3, y3); |
|
else d = calc_sq_distance(x2, y2, x1 + d*dx, y1 + d*dy); |
|
} |
|
if(d < m_distance_tolerance_square) |
|
{ |
|
m_points.add(point_d(x2, y2)); |
|
return; |
|
} |
|
} |
|
|
|
// Continue subdivision |
|
//---------------------- |
|
recursive_bezier(x1, y1, x12, y12, x123, y123, level + 1); |
|
recursive_bezier(x123, y123, x23, y23, x3, y3, level + 1); |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
void curve3_div::bezier(double x1, double y1, |
|
double x2, double y2, |
|
double x3, double y3) |
|
{ |
|
m_points.add(point_d(x1, y1)); |
|
recursive_bezier(x1, y1, x2, y2, x3, y3, 0); |
|
m_points.add(point_d(x3, y3)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------ |
|
void curve4_inc::approximation_scale(double s) |
|
{ |
|
m_scale = s; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
double curve4_inc::approximation_scale() const |
|
{ |
|
return m_scale; |
|
} |
|
|
|
#if defined(_MSC_VER) && _MSC_VER <= 1200 |
|
//------------------------------------------------------------------------ |
|
static double MSC60_fix_ICE(double v) { return v; } |
|
#endif |
|
|
|
//------------------------------------------------------------------------ |
|
void curve4_inc::init(double x1, double y1, |
|
double x2, double y2, |
|
double x3, double y3, |
|
double x4, double y4) |
|
{ |
|
m_start_x = x1; |
|
m_start_y = y1; |
|
m_end_x = x4; |
|
m_end_y = y4; |
|
|
|
double dx1 = x2 - x1; |
|
double dy1 = y2 - y1; |
|
double dx2 = x3 - x2; |
|
double dy2 = y3 - y2; |
|
double dx3 = x4 - x3; |
|
double dy3 = y4 - y3; |
|
|
|
double len = (std::sqrt(dx1 * dx1 + dy1 * dy1) + |
|
std::sqrt(dx2 * dx2 + dy2 * dy2) + |
|
std::sqrt(dx3 * dx3 + dy3 * dy3)) * 0.25 * m_scale; |
|
|
|
#if defined(_MSC_VER) && _MSC_VER <= 1200 |
|
m_num_steps = uround(MSC60_fix_ICE(len)); |
|
#else |
|
m_num_steps = uround(len); |
|
#endif |
|
|
|
if(m_num_steps < 4) |
|
{ |
|
m_num_steps = 4; |
|
} |
|
|
|
double subdivide_step = 1.0 / m_num_steps; |
|
double subdivide_step2 = subdivide_step * subdivide_step; |
|
double subdivide_step3 = subdivide_step * subdivide_step * subdivide_step; |
|
|
|
double pre1 = 3.0 * subdivide_step; |
|
double pre2 = 3.0 * subdivide_step2; |
|
double pre4 = 6.0 * subdivide_step2; |
|
double pre5 = 6.0 * subdivide_step3; |
|
|
|
double tmp1x = x1 - x2 * 2.0 + x3; |
|
double tmp1y = y1 - y2 * 2.0 + y3; |
|
|
|
double tmp2x = (x2 - x3) * 3.0 - x1 + x4; |
|
double tmp2y = (y2 - y3) * 3.0 - y1 + y4; |
|
|
|
m_saved_fx = m_fx = x1; |
|
m_saved_fy = m_fy = y1; |
|
|
|
m_saved_dfx = m_dfx = (x2 - x1) * pre1 + tmp1x * pre2 + tmp2x * subdivide_step3; |
|
m_saved_dfy = m_dfy = (y2 - y1) * pre1 + tmp1y * pre2 + tmp2y * subdivide_step3; |
|
|
|
m_saved_ddfx = m_ddfx = tmp1x * pre4 + tmp2x * pre5; |
|
m_saved_ddfy = m_ddfy = tmp1y * pre4 + tmp2y * pre5; |
|
|
|
m_dddfx = tmp2x * pre5; |
|
m_dddfy = tmp2y * pre5; |
|
|
|
m_step = m_num_steps; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
void curve4_inc::rewind(unsigned) |
|
{ |
|
if(m_num_steps == 0) |
|
{ |
|
m_step = -1; |
|
return; |
|
} |
|
m_step = m_num_steps; |
|
m_fx = m_saved_fx; |
|
m_fy = m_saved_fy; |
|
m_dfx = m_saved_dfx; |
|
m_dfy = m_saved_dfy; |
|
m_ddfx = m_saved_ddfx; |
|
m_ddfy = m_saved_ddfy; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
unsigned curve4_inc::vertex(double* x, double* y) |
|
{ |
|
if(m_step < 0) return path_cmd_stop; |
|
if(m_step == m_num_steps) |
|
{ |
|
*x = m_start_x; |
|
*y = m_start_y; |
|
--m_step; |
|
return path_cmd_move_to; |
|
} |
|
|
|
if(m_step == 0) |
|
{ |
|
*x = m_end_x; |
|
*y = m_end_y; |
|
--m_step; |
|
return path_cmd_line_to; |
|
} |
|
|
|
m_fx += m_dfx; |
|
m_fy += m_dfy; |
|
m_dfx += m_ddfx; |
|
m_dfy += m_ddfy; |
|
m_ddfx += m_dddfx; |
|
m_ddfy += m_dddfy; |
|
|
|
*x = m_fx; |
|
*y = m_fy; |
|
--m_step; |
|
return path_cmd_line_to; |
|
} |
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------ |
|
void curve4_div::init(double x1, double y1, |
|
double x2, double y2, |
|
double x3, double y3, |
|
double x4, double y4) |
|
{ |
|
m_points.remove_all(); |
|
m_distance_tolerance_square = 0.5 / m_approximation_scale; |
|
m_distance_tolerance_square *= m_distance_tolerance_square; |
|
bezier(x1, y1, x2, y2, x3, y3, x4, y4); |
|
m_count = 0; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
void curve4_div::recursive_bezier(double x1, double y1, |
|
double x2, double y2, |
|
double x3, double y3, |
|
double x4, double y4, |
|
unsigned level) |
|
{ |
|
if(level > curve_recursion_limit) |
|
{ |
|
return; |
|
} |
|
|
|
// Calculate all the mid-points of the line segments |
|
//---------------------- |
|
double x12 = (x1 + x2) / 2; |
|
double y12 = (y1 + y2) / 2; |
|
double x23 = (x2 + x3) / 2; |
|
double y23 = (y2 + y3) / 2; |
|
double x34 = (x3 + x4) / 2; |
|
double y34 = (y3 + y4) / 2; |
|
double x123 = (x12 + x23) / 2; |
|
double y123 = (y12 + y23) / 2; |
|
double x234 = (x23 + x34) / 2; |
|
double y234 = (y23 + y34) / 2; |
|
double x1234 = (x123 + x234) / 2; |
|
double y1234 = (y123 + y234) / 2; |
|
|
|
|
|
// Try to approximate the full cubic curve by a single straight line |
|
//------------------ |
|
double dx = x4-x1; |
|
double dy = y4-y1; |
|
|
|
double d2 = std::fabs(((x2 - x4) * dy - (y2 - y4) * dx)); |
|
double d3 = std::fabs(((x3 - x4) * dy - (y3 - y4) * dx)); |
|
double da1, da2, k; |
|
|
|
switch((int(d2 > curve_collinearity_epsilon) << 1) + |
|
int(d3 > curve_collinearity_epsilon)) |
|
{ |
|
case 0: |
|
// All collinear OR p1==p4 |
|
//---------------------- |
|
k = dx*dx + dy*dy; |
|
if(k == 0) |
|
{ |
|
d2 = calc_sq_distance(x1, y1, x2, y2); |
|
d3 = calc_sq_distance(x4, y4, x3, y3); |
|
} |
|
else |
|
{ |
|
k = 1 / k; |
|
da1 = x2 - x1; |
|
da2 = y2 - y1; |
|
d2 = k * (da1*dx + da2*dy); |
|
da1 = x3 - x1; |
|
da2 = y3 - y1; |
|
d3 = k * (da1*dx + da2*dy); |
|
if(d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1) |
|
{ |
|
// Simple collinear case, 1---2---3---4 |
|
// We can leave just two endpoints |
|
return; |
|
} |
|
if(d2 <= 0) d2 = calc_sq_distance(x2, y2, x1, y1); |
|
else if(d2 >= 1) d2 = calc_sq_distance(x2, y2, x4, y4); |
|
else d2 = calc_sq_distance(x2, y2, x1 + d2*dx, y1 + d2*dy); |
|
|
|
if(d3 <= 0) d3 = calc_sq_distance(x3, y3, x1, y1); |
|
else if(d3 >= 1) d3 = calc_sq_distance(x3, y3, x4, y4); |
|
else d3 = calc_sq_distance(x3, y3, x1 + d3*dx, y1 + d3*dy); |
|
} |
|
if(d2 > d3) |
|
{ |
|
if(d2 < m_distance_tolerance_square) |
|
{ |
|
m_points.add(point_d(x2, y2)); |
|
return; |
|
} |
|
} |
|
else |
|
{ |
|
if(d3 < m_distance_tolerance_square) |
|
{ |
|
m_points.add(point_d(x3, y3)); |
|
return; |
|
} |
|
} |
|
break; |
|
|
|
case 1: |
|
// p1,p2,p4 are collinear, p3 is significant |
|
//---------------------- |
|
if(d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy)) |
|
{ |
|
if(m_angle_tolerance < curve_angle_tolerance_epsilon) |
|
{ |
|
m_points.add(point_d(x23, y23)); |
|
return; |
|
} |
|
|
|
// Angle Condition |
|
//---------------------- |
|
da1 = std::fabs(std::atan2(y4 - y3, x4 - x3) - std::atan2(y3 - y2, x3 - x2)); |
|
if(da1 >= pi) da1 = 2*pi - da1; |
|
|
|
if(da1 < m_angle_tolerance) |
|
{ |
|
m_points.add(point_d(x2, y2)); |
|
m_points.add(point_d(x3, y3)); |
|
return; |
|
} |
|
|
|
if(m_cusp_limit != 0.0) |
|
{ |
|
if(da1 > m_cusp_limit) |
|
{ |
|
m_points.add(point_d(x3, y3)); |
|
return; |
|
} |
|
} |
|
} |
|
break; |
|
|
|
case 2: |
|
// p1,p3,p4 are collinear, p2 is significant |
|
//---------------------- |
|
if(d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy)) |
|
{ |
|
if(m_angle_tolerance < curve_angle_tolerance_epsilon) |
|
{ |
|
m_points.add(point_d(x23, y23)); |
|
return; |
|
} |
|
|
|
// Angle Condition |
|
//---------------------- |
|
da1 = std::fabs(std::atan2(y3 - y2, x3 - x2) - std::atan2(y2 - y1, x2 - x1)); |
|
if(da1 >= pi) da1 = 2*pi - da1; |
|
|
|
if(da1 < m_angle_tolerance) |
|
{ |
|
m_points.add(point_d(x2, y2)); |
|
m_points.add(point_d(x3, y3)); |
|
return; |
|
} |
|
|
|
if(m_cusp_limit != 0.0) |
|
{ |
|
if(da1 > m_cusp_limit) |
|
{ |
|
m_points.add(point_d(x2, y2)); |
|
return; |
|
} |
|
} |
|
} |
|
break; |
|
|
|
case 3: |
|
// Regular case |
|
//----------------- |
|
if((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy)) |
|
{ |
|
// If the curvature doesn't exceed the distance_tolerance value |
|
// we tend to finish subdivisions. |
|
//---------------------- |
|
if(m_angle_tolerance < curve_angle_tolerance_epsilon) |
|
{ |
|
m_points.add(point_d(x23, y23)); |
|
return; |
|
} |
|
|
|
// Angle & Cusp Condition |
|
//---------------------- |
|
k = std::atan2(y3 - y2, x3 - x2); |
|
da1 = std::fabs(k - std::atan2(y2 - y1, x2 - x1)); |
|
da2 = std::fabs(std::atan2(y4 - y3, x4 - x3) - k); |
|
if(da1 >= pi) da1 = 2*pi - da1; |
|
if(da2 >= pi) da2 = 2*pi - da2; |
|
|
|
if(da1 + da2 < m_angle_tolerance) |
|
{ |
|
// Finally we can stop the recursion |
|
//---------------------- |
|
m_points.add(point_d(x23, y23)); |
|
return; |
|
} |
|
|
|
if(m_cusp_limit != 0.0) |
|
{ |
|
if(da1 > m_cusp_limit) |
|
{ |
|
m_points.add(point_d(x2, y2)); |
|
return; |
|
} |
|
|
|
if(da2 > m_cusp_limit) |
|
{ |
|
m_points.add(point_d(x3, y3)); |
|
return; |
|
} |
|
} |
|
} |
|
break; |
|
} |
|
|
|
// Continue subdivision |
|
//---------------------- |
|
recursive_bezier(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1); |
|
recursive_bezier(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1); |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
void curve4_div::bezier(double x1, double y1, |
|
double x2, double y2, |
|
double x3, double y3, |
|
double x4, double y4) |
|
{ |
|
m_points.add(point_d(x1, y1)); |
|
recursive_bezier(x1, y1, x2, y2, x3, y3, x4, y4, 0); |
|
m_points.add(point_d(x4, y4)); |
|
} |
|
|
|
} |
|
|
|
|