You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
518 lines
18 KiB
518 lines
18 KiB
//---------------------------------------------------------------------------- |
|
// Anti-Grain Geometry - Version 2.4 |
|
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) |
|
// |
|
// Permission to copy, use, modify, sell and distribute this software |
|
// is granted provided this copyright notice appears in all copies. |
|
// This software is provided "as is" without express or implied |
|
// warranty, and with no claim as to its suitability for any purpose. |
|
// |
|
//---------------------------------------------------------------------------- |
|
// Contact: mcseem@antigrain.com |
|
// mcseemagg@yahoo.com |
|
// http://www.antigrain.com |
|
//---------------------------------------------------------------------------- |
|
// |
|
// Affine transformation classes. |
|
// |
|
//---------------------------------------------------------------------------- |
|
#ifndef AGG_TRANS_AFFINE_INCLUDED |
|
#define AGG_TRANS_AFFINE_INCLUDED |
|
|
|
#include <cmath> |
|
#include "agg_basics.h" |
|
|
|
namespace agg |
|
{ |
|
const double affine_epsilon = 1e-14; |
|
|
|
//============================================================trans_affine |
|
// |
|
// See Implementation agg_trans_affine.cpp |
|
// |
|
// Affine transformation are linear transformations in Cartesian coordinates |
|
// (strictly speaking not only in Cartesian, but for the beginning we will |
|
// think so). They are rotation, scaling, translation and skewing. |
|
// After any affine transformation a line segment remains a line segment |
|
// and it will never become a curve. |
|
// |
|
// There will be no math about matrix calculations, since it has been |
|
// described many times. Ask yourself a very simple question: |
|
// "why do we need to understand and use some matrix stuff instead of just |
|
// rotating, scaling and so on". The answers are: |
|
// |
|
// 1. Any combination of transformations can be done by only 4 multiplications |
|
// and 4 additions in floating point. |
|
// 2. One matrix transformation is equivalent to the number of consecutive |
|
// discrete transformations, i.e. the matrix "accumulates" all transformations |
|
// in the order of their settings. Suppose we have 4 transformations: |
|
// * rotate by 30 degrees, |
|
// * scale X to 2.0, |
|
// * scale Y to 1.5, |
|
// * move to (100, 100). |
|
// The result will depend on the order of these transformations, |
|
// and the advantage of matrix is that the sequence of discret calls: |
|
// rotate(30), scaleX(2.0), scaleY(1.5), move(100,100) |
|
// will have exactly the same result as the following matrix transformations: |
|
// |
|
// affine_matrix m; |
|
// m *= rotate_matrix(30); |
|
// m *= scaleX_matrix(2.0); |
|
// m *= scaleY_matrix(1.5); |
|
// m *= move_matrix(100,100); |
|
// |
|
// m.transform_my_point_at_last(x, y); |
|
// |
|
// What is the good of it? In real life we will set-up the matrix only once |
|
// and then transform many points, let alone the convenience to set any |
|
// combination of transformations. |
|
// |
|
// So, how to use it? Very easy - literally as it's shown above. Not quite, |
|
// let us write a correct example: |
|
// |
|
// agg::trans_affine m; |
|
// m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0); |
|
// m *= agg::trans_affine_scaling(2.0, 1.5); |
|
// m *= agg::trans_affine_translation(100.0, 100.0); |
|
// m.transform(&x, &y); |
|
// |
|
// The affine matrix is all you need to perform any linear transformation, |
|
// but all transformations have origin point (0,0). It means that we need to |
|
// use 2 translations if we want to rotate someting around (100,100): |
|
// |
|
// m *= agg::trans_affine_translation(-100.0, -100.0); // move to (0,0) |
|
// m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0); // rotate |
|
// m *= agg::trans_affine_translation(100.0, 100.0); // move back to (100,100) |
|
//---------------------------------------------------------------------- |
|
struct trans_affine |
|
{ |
|
double sx, shy, shx, sy, tx, ty; |
|
|
|
//------------------------------------------ Construction |
|
// Identity matrix |
|
trans_affine() : |
|
sx(1.0), shy(0.0), shx(0.0), sy(1.0), tx(0.0), ty(0.0) |
|
{} |
|
|
|
// Custom matrix. Usually used in derived classes |
|
trans_affine(double v0, double v1, double v2, |
|
double v3, double v4, double v5) : |
|
sx(v0), shy(v1), shx(v2), sy(v3), tx(v4), ty(v5) |
|
{} |
|
|
|
// Custom matrix from m[6] |
|
explicit trans_affine(const double* m) : |
|
sx(m[0]), shy(m[1]), shx(m[2]), sy(m[3]), tx(m[4]), ty(m[5]) |
|
{} |
|
|
|
// Rectangle to a parallelogram. |
|
trans_affine(double x1, double y1, double x2, double y2, |
|
const double* parl) |
|
{ |
|
rect_to_parl(x1, y1, x2, y2, parl); |
|
} |
|
|
|
// Parallelogram to a rectangle. |
|
trans_affine(const double* parl, |
|
double x1, double y1, double x2, double y2) |
|
{ |
|
parl_to_rect(parl, x1, y1, x2, y2); |
|
} |
|
|
|
// Arbitrary parallelogram transformation. |
|
trans_affine(const double* src, const double* dst) |
|
{ |
|
parl_to_parl(src, dst); |
|
} |
|
|
|
//---------------------------------- Parellelogram transformations |
|
// transform a parallelogram to another one. Src and dst are |
|
// pointers to arrays of three points (double[6], x1,y1,...) that |
|
// identify three corners of the parallelograms assuming implicit |
|
// fourth point. The arguments are arrays of double[6] mapped |
|
// to x1,y1, x2,y2, x3,y3 where the coordinates are: |
|
// *-----------------* |
|
// / (x3,y3)/ |
|
// / / |
|
// /(x1,y1) (x2,y2)/ |
|
// *-----------------* |
|
const trans_affine& parl_to_parl(const double* src, |
|
const double* dst); |
|
|
|
const trans_affine& rect_to_parl(double x1, double y1, |
|
double x2, double y2, |
|
const double* parl); |
|
|
|
const trans_affine& parl_to_rect(const double* parl, |
|
double x1, double y1, |
|
double x2, double y2); |
|
|
|
|
|
//------------------------------------------ Operations |
|
// Reset - load an identity matrix |
|
const trans_affine& reset(); |
|
|
|
// Direct transformations operations |
|
const trans_affine& translate(double x, double y); |
|
const trans_affine& rotate(double a); |
|
const trans_affine& scale(double s); |
|
const trans_affine& scale(double x, double y); |
|
|
|
// Multiply matrix to another one |
|
const trans_affine& multiply(const trans_affine& m); |
|
|
|
// Multiply "m" to "this" and assign the result to "this" |
|
const trans_affine& premultiply(const trans_affine& m); |
|
|
|
// Multiply matrix to inverse of another one |
|
const trans_affine& multiply_inv(const trans_affine& m); |
|
|
|
// Multiply inverse of "m" to "this" and assign the result to "this" |
|
const trans_affine& premultiply_inv(const trans_affine& m); |
|
|
|
// Invert matrix. Do not try to invert degenerate matrices, |
|
// there's no check for validity. If you set scale to 0 and |
|
// then try to invert matrix, expect unpredictable result. |
|
const trans_affine& invert(); |
|
|
|
// Mirroring around X |
|
const trans_affine& flip_x(); |
|
|
|
// Mirroring around Y |
|
const trans_affine& flip_y(); |
|
|
|
//------------------------------------------- Load/Store |
|
// Store matrix to an array [6] of double |
|
void store_to(double* m) const |
|
{ |
|
*m++ = sx; *m++ = shy; *m++ = shx; *m++ = sy; *m++ = tx; *m++ = ty; |
|
} |
|
|
|
// Load matrix from an array [6] of double |
|
const trans_affine& load_from(const double* m) |
|
{ |
|
sx = *m++; shy = *m++; shx = *m++; sy = *m++; tx = *m++; ty = *m++; |
|
return *this; |
|
} |
|
|
|
//------------------------------------------- Operators |
|
|
|
// Multiply the matrix by another one |
|
const trans_affine& operator *= (const trans_affine& m) |
|
{ |
|
return multiply(m); |
|
} |
|
|
|
// Multiply the matrix by inverse of another one |
|
const trans_affine& operator /= (const trans_affine& m) |
|
{ |
|
return multiply_inv(m); |
|
} |
|
|
|
// Multiply the matrix by another one and return |
|
// the result in a separete matrix. |
|
trans_affine operator * (const trans_affine& m) const |
|
{ |
|
return trans_affine(*this).multiply(m); |
|
} |
|
|
|
// Multiply the matrix by inverse of another one |
|
// and return the result in a separete matrix. |
|
trans_affine operator / (const trans_affine& m) const |
|
{ |
|
return trans_affine(*this).multiply_inv(m); |
|
} |
|
|
|
// Calculate and return the inverse matrix |
|
trans_affine operator ~ () const |
|
{ |
|
trans_affine ret = *this; |
|
return ret.invert(); |
|
} |
|
|
|
// Equal operator with default epsilon |
|
bool operator == (const trans_affine& m) const |
|
{ |
|
return is_equal(m, affine_epsilon); |
|
} |
|
|
|
// Not Equal operator with default epsilon |
|
bool operator != (const trans_affine& m) const |
|
{ |
|
return !is_equal(m, affine_epsilon); |
|
} |
|
|
|
//-------------------------------------------- Transformations |
|
// Direct transformation of x and y |
|
void transform(double* x, double* y) const; |
|
|
|
// Direct transformation of x and y, 2x2 matrix only, no translation |
|
void transform_2x2(double* x, double* y) const; |
|
|
|
// Inverse transformation of x and y. It works slower than the |
|
// direct transformation. For massive operations it's better to |
|
// invert() the matrix and then use direct transformations. |
|
void inverse_transform(double* x, double* y) const; |
|
|
|
//-------------------------------------------- Auxiliary |
|
// Calculate the determinant of matrix |
|
double determinant() const |
|
{ |
|
return sx * sy - shy * shx; |
|
} |
|
|
|
// Calculate the reciprocal of the determinant |
|
double determinant_reciprocal() const |
|
{ |
|
return 1.0 / (sx * sy - shy * shx); |
|
} |
|
|
|
// Get the average scale (by X and Y). |
|
// Basically used to calculate the approximation_scale when |
|
// decomposinting curves into line segments. |
|
double scale() const; |
|
|
|
// Check to see if the matrix is not degenerate |
|
bool is_valid(double epsilon = affine_epsilon) const; |
|
|
|
// Check to see if it's an identity matrix |
|
bool is_identity(double epsilon = affine_epsilon) const; |
|
|
|
// Check to see if two matrices are equal |
|
bool is_equal(const trans_affine& m, double epsilon = affine_epsilon) const; |
|
|
|
// Determine the major parameters. Use with caution considering |
|
// possible degenerate cases. |
|
double rotation() const; |
|
void translation(double* dx, double* dy) const; |
|
void scaling(double* x, double* y) const; |
|
void scaling_abs(double* x, double* y) const; |
|
}; |
|
|
|
//------------------------------------------------------------------------ |
|
inline void trans_affine::transform(double* x, double* y) const |
|
{ |
|
double tmp = *x; |
|
*x = tmp * sx + *y * shx + tx; |
|
*y = tmp * shy + *y * sy + ty; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline void trans_affine::transform_2x2(double* x, double* y) const |
|
{ |
|
double tmp = *x; |
|
*x = tmp * sx + *y * shx; |
|
*y = tmp * shy + *y * sy; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline void trans_affine::inverse_transform(double* x, double* y) const |
|
{ |
|
double d = determinant_reciprocal(); |
|
double a = (*x - tx) * d; |
|
double b = (*y - ty) * d; |
|
*x = a * sy - b * shx; |
|
*y = b * sx - a * shy; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline double trans_affine::scale() const |
|
{ |
|
double x = 0.707106781 * sx + 0.707106781 * shx; |
|
double y = 0.707106781 * shy + 0.707106781 * sy; |
|
return std::sqrt(x*x + y*y); |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline const trans_affine& trans_affine::translate(double x, double y) |
|
{ |
|
tx += x; |
|
ty += y; |
|
return *this; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline const trans_affine& trans_affine::rotate(double a) |
|
{ |
|
double ca = std::cos(a); |
|
double sa = std::sin(a); |
|
double t0 = sx * ca - shy * sa; |
|
double t2 = shx * ca - sy * sa; |
|
double t4 = tx * ca - ty * sa; |
|
shy = sx * sa + shy * ca; |
|
sy = shx * sa + sy * ca; |
|
ty = tx * sa + ty * ca; |
|
sx = t0; |
|
shx = t2; |
|
tx = t4; |
|
return *this; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline const trans_affine& trans_affine::scale(double x, double y) |
|
{ |
|
double mm0 = x; // Possible hint for the optimizer |
|
double mm3 = y; |
|
sx *= mm0; |
|
shx *= mm0; |
|
tx *= mm0; |
|
shy *= mm3; |
|
sy *= mm3; |
|
ty *= mm3; |
|
return *this; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline const trans_affine& trans_affine::scale(double s) |
|
{ |
|
double m = s; // Possible hint for the optimizer |
|
sx *= m; |
|
shx *= m; |
|
tx *= m; |
|
shy *= m; |
|
sy *= m; |
|
ty *= m; |
|
return *this; |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline const trans_affine& trans_affine::premultiply(const trans_affine& m) |
|
{ |
|
trans_affine t = m; |
|
return *this = t.multiply(*this); |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline const trans_affine& trans_affine::multiply_inv(const trans_affine& m) |
|
{ |
|
trans_affine t = m; |
|
t.invert(); |
|
return multiply(t); |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline const trans_affine& trans_affine::premultiply_inv(const trans_affine& m) |
|
{ |
|
trans_affine t = m; |
|
t.invert(); |
|
return *this = t.multiply(*this); |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
inline void trans_affine::scaling_abs(double* x, double* y) const |
|
{ |
|
// Used to calculate scaling coefficients in image resampling. |
|
// When there is considerable shear this method gives us much |
|
// better estimation than just sx, sy. |
|
*x = std::sqrt(sx * sx + shx * shx); |
|
*y = std::sqrt(shy * shy + sy * sy); |
|
} |
|
|
|
//====================================================trans_affine_rotation |
|
// Rotation matrix. sin() and cos() are calculated twice for the same angle. |
|
// There's no harm because the performance of sin()/cos() is very good on all |
|
// modern processors. Besides, this operation is not going to be invoked too |
|
// often. |
|
class trans_affine_rotation : public trans_affine |
|
{ |
|
public: |
|
trans_affine_rotation(double a) : |
|
trans_affine(std::cos(a), std::sin(a), -std::sin(a), std::cos(a), 0.0, 0.0) |
|
{} |
|
}; |
|
|
|
//====================================================trans_affine_scaling |
|
// Scaling matrix. x, y - scale coefficients by X and Y respectively |
|
class trans_affine_scaling : public trans_affine |
|
{ |
|
public: |
|
trans_affine_scaling(double x, double y) : |
|
trans_affine(x, 0.0, 0.0, y, 0.0, 0.0) |
|
{} |
|
|
|
trans_affine_scaling(double s) : |
|
trans_affine(s, 0.0, 0.0, s, 0.0, 0.0) |
|
{} |
|
}; |
|
|
|
//================================================trans_affine_translation |
|
// Translation matrix |
|
class trans_affine_translation : public trans_affine |
|
{ |
|
public: |
|
trans_affine_translation(double x, double y) : |
|
trans_affine(1.0, 0.0, 0.0, 1.0, x, y) |
|
{} |
|
}; |
|
|
|
//====================================================trans_affine_skewing |
|
// Sckewing (shear) matrix |
|
class trans_affine_skewing : public trans_affine |
|
{ |
|
public: |
|
trans_affine_skewing(double x, double y) : |
|
trans_affine(1.0, std::tan(y), std::tan(x), 1.0, 0.0, 0.0) |
|
{} |
|
}; |
|
|
|
|
|
//===============================================trans_affine_line_segment |
|
// Rotate, Scale and Translate, associating 0...dist with line segment |
|
// x1,y1,x2,y2 |
|
class trans_affine_line_segment : public trans_affine |
|
{ |
|
public: |
|
trans_affine_line_segment(double x1, double y1, double x2, double y2, |
|
double dist) |
|
{ |
|
double dx = x2 - x1; |
|
double dy = y2 - y1; |
|
if(dist > 0.0) |
|
{ |
|
multiply(trans_affine_scaling(std::sqrt(dx * dx + dy * dy) / dist)); |
|
} |
|
multiply(trans_affine_rotation(std::atan2(dy, dx))); |
|
multiply(trans_affine_translation(x1, y1)); |
|
} |
|
}; |
|
|
|
|
|
//============================================trans_affine_reflection_unit |
|
// Reflection matrix. Reflect coordinates across the line through |
|
// the origin containing the unit vector (ux, uy). |
|
// Contributed by John Horigan |
|
class trans_affine_reflection_unit : public trans_affine |
|
{ |
|
public: |
|
trans_affine_reflection_unit(double ux, double uy) : |
|
trans_affine(2.0 * ux * ux - 1.0, |
|
2.0 * ux * uy, |
|
2.0 * ux * uy, |
|
2.0 * uy * uy - 1.0, |
|
0.0, 0.0) |
|
{} |
|
}; |
|
|
|
|
|
//=================================================trans_affine_reflection |
|
// Reflection matrix. Reflect coordinates across the line through |
|
// the origin at the angle a or containing the non-unit vector (x, y). |
|
// Contributed by John Horigan |
|
class trans_affine_reflection : public trans_affine_reflection_unit |
|
{ |
|
public: |
|
trans_affine_reflection(double a) : |
|
trans_affine_reflection_unit(std::cos(a), std::sin(a)) |
|
{} |
|
|
|
|
|
trans_affine_reflection(double x, double y) : |
|
trans_affine_reflection_unit(x / std::sqrt(x * x + y * y), y / std::sqrt(x * x + y * y)) |
|
{} |
|
}; |
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|