Template project for running EEZ Flow firmware project using STM32F469I-DISCO development board
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1482 lines
51 KiB

/**
******************************************************************************
* @file stm32469i_discovery_audio.c
* @author MCD Application Team
* @version V2.0.0
* @date 27-January-2017
* @brief This file provides the Audio driver for the STM32469I-Discovery board.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/*==============================================================================
User NOTES
How To use this driver:
-----------------------
+ This driver supports STM32F4xx devices on STM32469I-Discovery (MB1189) Discovery boards.
+ Call the function BSP_AUDIO_OUT_Init(
OutputDevice: physical output mode (OUTPUT_DEVICE_HEADPHONE1,
OUTPUT_DEVICE_HEADPHONE2 or OUTPUT_DEVICE_BOTH)
Volume : Initial volume to be set (0 is min (mute), 100 is max (100%)
AudioFreq : Audio frequency in Hz (8000, 16000, 22500, 32000...)
this parameter is relative to the audio file/stream type.
)
This function configures all the hardware required for the audio application (codec, I2C, SAI,
GPIOs, DMA and interrupt if needed). This function returns AUDIO_OK if configuration is OK.
If the returned value is different from AUDIO_OK or the function is stuck then the communication with
the codec or the MFX has failed (try to un-plug the power or reset device in this case).
- OUTPUT_DEVICE_HEADPHONE1 : only headphones 1 will be set as output for the audio stream.
- OUTPUT_DEVICE_HEADPHONE2 : only headphones 2 will be set as output for the audio stream.
- OUTPUT_DEVICE_BOTH : both Headphones are used as outputs for the audio stream
at the same time.
Note. On STM32469I-Discovery SAI_DMA is configured in CIRCULAR mode. Due to this the application
does NOT need to call BSP_AUDIO_OUT_ChangeBuffer() to assure straming.
+ Call the function BSP_Discovery_AUDIO_OUT_Play(
pBuffer: pointer to the audio data file address
Size : size of the buffer to be sent in Bytes
)
to start playing (for the first time) from the audio file/stream.
+ Call the function BSP_AUDIO_OUT_Pause() to pause playing
+ Call the function BSP_AUDIO_OUT_Resume() to resume playing.
Note. After calling BSP_AUDIO_OUT_Pause() function for pause, only BSP_AUDIO_OUT_Resume() should be called
for resume (it is not allowed to call BSP_AUDIO_OUT_Play() in this case).
Note. This function should be called only when the audio file is played or paused (not stopped).
+ For each mode, you may need to implement the relative callback functions into your code.
The Callback functions are named AUDIO_OUT_XXX_CallBack() and only their prototypes are declared in
the stm32469i_discovery_audio.h file. (refer to the example for more details on the callbacks implementations)
+ To Stop playing, to modify the volume level, the frequency, the audio frame slot,
the device output mode the mute or the stop, use the functions: BSP_AUDIO_OUT_SetVolume(),
AUDIO_OUT_SetFrequency(), BSP_AUDIO_OUT_SetAudioFrameSlot(), BSP_AUDIO_OUT_SetOutputMode(),
BSP_AUDIO_OUT_SetMute() and BSP_AUDIO_OUT_Stop().
+ The driver API and the callback functions are at the end of the stm32469i_discovery_audio.h file.
Driver architecture:
--------------------
+ This driver provide the High Audio Layer: consists of the function API exported in the stm32469i_discovery_audio.h file
(BSP_AUDIO_OUT_Init(), BSP_AUDIO_OUT_Play() ...)
+ This driver provide also the Media Access Layer (MAL): which consists of functions allowing to access the media containing/
providing the audio file/stream. These functions are also included as local functions into
the stm32469i_discovery_audio_codec.c file (I2Sx_Init(), I2Sx_DeInit(), SAIx_Init() and SAIx_DeInit())
Known Limitations:
------------------
1- If the TDM Format used to paly in parallel 2 audio Stream (the first Stream is configured in codec SLOT0 and second
Stream in SLOT1) the Pause/Resume, volume and mute feature will control the both streams.
2- Parsing of audio file is not implemented (in order to determine audio file properties: Mono/Stereo, Data size,
File size, Audio Frequency, Audio Data header size ...). The configuration is fixed for the given audio file.
3- Supports only Stereo audio streaming.
4- Supports only 16-bits audio data size.
==============================================================================*/
/* Includes ------------------------------------------------------------------*/
#include <string.h>
#include "stm32469i_discovery_audio.h"
/** @addtogroup BSP
* @{
*/
/** @addtogroup STM32469I_Discovery
* @{
*/
/** @defgroup STM32469I-Discovery_AUDIO STM32469I Discovery AUDIO
* @brief This file includes the low layer driver for CS43L22 Audio Codec
* available on STM32469I-Discovery board(MB1189).
* @{
*/
/** @defgroup STM32469I-Discovery_AUDIO_Private_Types STM32469I Discovery AUDIO Private Types
* @{
*/
/**
* @}
*/
/** @defgroup STM32469I-Discovery_AUDIO_Private_Defines STM32469I Discovery AUDIO Private Defines
* @brief Headphone1 (CN27 of STM32469I-Discovery board) is connected to the
* HEADPHONE output of CS43L22 Audio Codec.
* Headphone2 (CN26 of STM32469I-Discovery board) is connected to the
* SPEAKER output of CS43L22 Audio Codec.
* @{
*/
#define OUTPUT_DEVICE_HEADPHONE1 OUTPUT_DEVICE_HEADPHONE
/* Headphone2 is connected to Speaker output of the CS43L22 codec */
#define OUTPUT_DEVICE_HEADPHONE2 OUTPUT_DEVICE_SPEAKER
/**
* @}
*/
/** @defgroup STM32469I-Discovery_AUDIO_Private_Macros STM32469I Discovery AUDIO Private macros
* @{
*/
/*### PLAY ###*/
/* SCK(kHz) = SAI_CK_x/(SAIClockDivider*2*256) */
#define SAIClockDivider(__FREQUENCY__) \
(__FREQUENCY__ == AUDIO_FREQUENCY_8K) ? 12 \
: (__FREQUENCY__ == AUDIO_FREQUENCY_11K) ? 2 \
: (__FREQUENCY__ == AUDIO_FREQUENCY_16K) ? 6 \
: (__FREQUENCY__ == AUDIO_FREQUENCY_22K) ? 1 \
: (__FREQUENCY__ == AUDIO_FREQUENCY_32K) ? 3 \
: (__FREQUENCY__ == AUDIO_FREQUENCY_44K) ? 0 \
: (__FREQUENCY__ == AUDIO_FREQUENCY_48K) ? 2 : 1 \
/**
* @}
*/
/** @defgroup STM32469I-Discovery_AUDIO_Private_Variables STM32469I Discovery AUDIO Private Variables
* @{
*/
/*
Note:
these global variables are not compliant to naming rules (upper case without "_" ),
but we keep this naming for compatibility, in fact these variables (not static)
could have been used by the application, example the stm32f4xx_it.c:
void DMA2_Stream6_IRQHandler(void)
{ HAL_DMA_IRQHandler(haudio_out_sai.hdmatx); }
*/
AUDIO_DrvTypeDef *audio_drv;
SAI_HandleTypeDef haudio_out_sai;
I2S_HandleTypeDef haudio_in_i2s;
TIM_HandleTypeDef haudio_tim;
/* PDM filters params */
PDM_Filter_Handler_t PDM_FilterHandler[2];
PDM_Filter_Config_t PDM_FilterConfig[2];
uint8_t Channel_Demux[128] = {
0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03,
0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03,
0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07,
0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07,
0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03,
0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03,
0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07,
0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07,
0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b,
0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b,
0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f,
0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f,
0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b,
0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b,
0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f,
0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f
};
uint16_t __IO AudioInVolume = DEFAULT_AUDIO_IN_VOLUME;
/**
* @}
*/
/** @defgroup STM32469I-Discovery_AUDIO_Private_Function_Prototypes STM32469I Discovery AUDIO Private Prototypes
* @{
*/
static uint8_t SAIx_Init(uint32_t AudioFreq);
static void SAIx_DeInit(void);
static void I2Sx_Init(uint32_t AudioFreq);
static void I2Sx_DeInit(void);
static void TIMx_IC_MspInit(TIM_HandleTypeDef *htim);
static void TIMx_IC_MspDeInit(TIM_HandleTypeDef *htim);
static void TIMx_Init(void);
static void TIMx_DeInit(void);
static void PDMDecoder_Init(uint32_t AudioFreq, uint32_t ChnlNbrIn, uint32_t ChnlNbrOut);
void BSP_AUDIO_OUT_ChangeAudioConfig(uint32_t AudioOutOption);
/**
* @}
*/
/** @defgroup STM32469I-Discovery_AUDIO_out_Private_Functions STM32469I Discovery AUDIO OUT Private Functions
* @{
*/
/**
* @brief Configures the audio peripherals.
* @param OutputDevice: OUTPUT_DEVICE_SPEAKER, OUTPUT_DEVICE_HEADPHONE,
* or OUTPUT_DEVICE_BOTH.
* @param Volume: Initial volume level (from 0 (Mute) to 100 (Max))
* @param AudioFreq: Audio frequency used to play the audio stream.
* @note The SAI PLL input clock must be done in the user application.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_Init(uint16_t OutputDevice,
uint8_t Volume,
uint32_t AudioFreq)
{
uint8_t ret = AUDIO_OK;
SAIx_DeInit();
/* PLL clock is set depending by the AudioFreq (44.1khz vs 48khz groups) */
BSP_AUDIO_OUT_ClockConfig(&haudio_out_sai, AudioFreq, NULL);
/* SAI data transfer preparation:
Prepare the Media to be used for the audio transfer from memory to SAI peripheral */
haudio_out_sai.Instance = AUDIO_SAIx;
if(HAL_SAI_GetState(&haudio_out_sai) == HAL_SAI_STATE_RESET)
{
/* Init the SAI MSP: this __weak function can be redefined by the application*/
BSP_AUDIO_OUT_MspInit(&haudio_out_sai, NULL);
}
if (SAIx_Init(AudioFreq) != AUDIO_OK)
{
ret = AUDIO_ERROR;
}
if(ret == AUDIO_OK)
{
/* Retieve audio codec identifier */
if (cs43l22_drv.ReadID(AUDIO_I2C_ADDRESS) == CS43L22_ID)
{
/* Initialize the audio driver structure */
audio_drv = &cs43l22_drv;
}
else
{
ret = AUDIO_ERROR;
}
}
if(ret == AUDIO_OK)
{
/* Initialize the audio codec internal registers */
if (audio_drv->Init(AUDIO_I2C_ADDRESS,
OutputDevice,
Volume,
AudioFreq) != AUDIO_OK)
{
ret = AUDIO_ERROR;
}
}
return ret;
}
/**
* @brief Starts playing audio stream from a data buffer for a determined size.
* @param pBuffer: Pointer to the buffer
* @param Size: Number of audio data BYTES.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_Play(uint16_t* pBuffer, uint32_t Size)
{
uint8_t ret = AUDIO_OK;
/* Call the audio Codec Play function */
if(audio_drv->Play(AUDIO_I2C_ADDRESS, pBuffer, Size) != 0)
{
ret = AUDIO_ERROR;
}
/* Initiate a DMA transfer of PCM samples towards the serial audio interface */
if(ret == AUDIO_OK)
{
if (HAL_SAI_Transmit_DMA(&haudio_out_sai, (uint8_t*) pBuffer, DMA_MAX(Size / AUDIODATA_SIZE))!= HAL_OK)
{
ret = AUDIO_ERROR;
}
}
return ret;
}
/**
* @brief Sends n-Bytes on the SAI interface.
* @param pData: pointer on PCM samples buffer
* @param Size: number of data to be written
*/
void BSP_AUDIO_OUT_ChangeBuffer(uint16_t *pData, uint16_t Size)
{
HAL_SAI_Transmit_DMA(&haudio_out_sai, (uint8_t*) pData, Size);
}
/**
* @brief This function Pauses the audio file stream. In case
* of using DMA, the DMA Pause feature is used.
* @warning When calling BSP_AUDIO_OUT_Pause() function for pause, only
* BSP_AUDIO_OUT_Resume() function should be called for resume (use of BSP_AUDIO_OUT_Play()
* function for resume could lead to unexpected behavior).
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_Pause(void)
{
uint8_t ret = AUDIO_OK;
/* Call the Audio Codec Pause/Resume function */
if(audio_drv->Pause(AUDIO_I2C_ADDRESS) != 0)
{
ret = AUDIO_ERROR;
}
/* Pause DMA transfer of PCM samples towards the serial audio interface */
if(ret == AUDIO_OK)
{
if (HAL_SAI_DMAPause(&haudio_out_sai)!= HAL_OK)
{
ret = AUDIO_ERROR;
}
}
/* Return AUDIO_OK when all operations are correctly done */
return ret;
}
/**
* @brief This function Resumes the audio file stream.
* WARNING: When calling BSP_AUDIO_OUT_Pause() function for pause, only
* BSP_AUDIO_OUT_Resume() function should be called for resume
* (use of BSP_AUDIO_OUT_Play() function for resume could lead to
* unexpected behavior).
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_Resume(void)
{
uint8_t ret = AUDIO_OK;
/* Call the Audio Codec Pause/Resume function */
if(audio_drv->Resume(AUDIO_I2C_ADDRESS) != 0)
{
ret = AUDIO_ERROR;
}
/* Resume DMA transfer of PCM samples towards the serial audio interface */
if(ret == AUDIO_OK)
{
if (HAL_SAI_DMAResume(&haudio_out_sai)!= HAL_OK)
{
ret = AUDIO_ERROR;
}
}
/* Return AUDIO_OK when all operations are correctly done */
return ret;
}
/**
* @brief Stops audio playing and Power down the Audio Codec.
* @param Option: could be one of the following parameters
* - CODEC_PDWN_SW: for software power off (by writing registers).
* Then no need to reconfigure the Codec after power on.
* - CODEC_PDWN_HW: completely shut down the codec (physically).
* Then need to reconfigure the Codec after power on.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_Stop(uint32_t Option)
{
uint8_t ret = AUDIO_OK;
/* Call Audio Codec Stop function */
if(audio_drv->Stop(AUDIO_I2C_ADDRESS, Option) != 0)
{
ret = AUDIO_ERROR;
}
if(ret == AUDIO_OK)
{
if(Option == CODEC_PDWN_HW)
{
/* Wait at least 100us */
HAL_Delay(2);
}
/* Stop DMA transfer of PCM samples towards the serial audio interface */
if (HAL_SAI_DMAStop(&haudio_out_sai)!= HAL_OK)
{
ret = AUDIO_ERROR;
}
}
/* Return AUDIO_OK when all operations are correctly done */
return ret;
}
/**
* @brief Controls the current audio volume level.
* @param Volume: Volume level to be set in percentage from 0% to 100% (0 for
* Mute and 100 for Max volume level).
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_SetVolume(uint8_t Volume)
{
uint8_t ret = AUDIO_OK;
/* Call the codec volume control function with converted volume value */
if(audio_drv->SetVolume(AUDIO_I2C_ADDRESS, Volume) != 0)
{
ret = AUDIO_ERROR;
}
/* Return AUDIO_OK when all operations are correctly done */
return ret;
}
/**
* @brief Enables or disables the MUTE mode by software
* @param Cmd: Could be AUDIO_MUTE_ON to mute sound or AUDIO_MUTE_OFF to
* unmute the codec and restore previous volume level.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_SetMute(uint32_t Cmd)
{
uint8_t ret = AUDIO_OK;
/* Call the Codec Mute function */
if(audio_drv->SetMute(AUDIO_I2C_ADDRESS, Cmd) != 0)
{
ret = AUDIO_ERROR;
}
/* Return AUDIO_OK when all operations are correctly done */
return ret;
}
/**
* @brief Switch dynamically (while audio file is being played) the output
* target (speaker or headphone).
* @param Output: The audio output target: OUTPUT_DEVICE_SPEAKER,
* OUTPUT_DEVICE_HEADPHONE or OUTPUT_DEVICE_BOTH
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_SetOutputMode(uint8_t Output)
{
uint8_t ret = AUDIO_OK;
/* Call the Codec output device function */
if(audio_drv->SetOutputMode(AUDIO_I2C_ADDRESS, Output) != 0)
{
ret = AUDIO_ERROR;
}
/* Return AUDIO_OK when all operations are correctly done */
return ret;
}
/**
* @brief Updates the audio frequency.
* @param AudioFreq: Audio frequency used to play the audio stream.
* @note This API should be called after the BSP_AUDIO_OUT_Init() to adjust the
* audio frequency.
*/
void BSP_AUDIO_OUT_SetFrequency(uint32_t AudioFreq)
{
/* PLL clock is set depending by the AudioFreq (44.1khz vs 48khz groups) */
BSP_AUDIO_OUT_ClockConfig(&haudio_out_sai, AudioFreq, NULL);
/* Disable SAI peripheral to allow access to SAI internal registers */
__HAL_SAI_DISABLE(&haudio_out_sai);
/* Update the SAI audio frequency configuration */
haudio_out_sai.Init.AudioFrequency = AudioFreq;
HAL_SAI_Init(&haudio_out_sai);
/* Enable SAI peripheral to generate MCLK */
__HAL_SAI_ENABLE(&haudio_out_sai);
}
/**
* @brief Changes the Audio Out Configuration.
* @param AudioOutOption: specifies the audio out new configuration
* This parameter can be any value of @ref BSP_Audio_Out_Option
* @note This API should be called after the BSP_AUDIO_OUT_Init() to adjust the
* audio out configuration.
*/
void BSP_AUDIO_OUT_ChangeAudioConfig(uint32_t AudioOutOption)
{
/********** Playback Buffer circular/normal mode **********/
if(AudioOutOption & BSP_AUDIO_OUT_CIRCULARMODE)
{
/* Deinitialize the Stream to update DMA mode */
HAL_DMA_DeInit(haudio_out_sai.hdmatx);
/* Update the SAI audio Transfer DMA mode */
haudio_out_sai.hdmatx->Init.Mode = DMA_CIRCULAR;
/* Configure the DMA Stream with new Transfer DMA mode */
HAL_DMA_Init(haudio_out_sai.hdmatx);
}
else /* BSP_AUDIO_OUT_NORMALMODE */
{
/* Deinitialize the Stream to update DMA mode */
HAL_DMA_DeInit(haudio_out_sai.hdmatx);
/* Update the SAI audio Transfer DMA mode */
haudio_out_sai.hdmatx->Init.Mode = DMA_NORMAL;
/* Configure the DMA Stream with new Transfer DMA mode */
HAL_DMA_Init(haudio_out_sai.hdmatx);
}
/********** Playback Buffer stereo/mono mode **********/
if(AudioOutOption & BSP_AUDIO_OUT_STEREOMODE)
{
/* Disable SAI peripheral to allow access to SAI internal registers */
__HAL_SAI_DISABLE(&haudio_out_sai);
/* Update the SAI audio frame slot configuration */
haudio_out_sai.Init.MonoStereoMode = SAI_STEREOMODE;
HAL_SAI_Init(&haudio_out_sai);
/* Enable SAI peripheral to generate MCLK */
__HAL_SAI_ENABLE(&haudio_out_sai);
}
else /* BSP_AUDIO_OUT_MONOMODE */
{
/* Disable SAI peripheral to allow access to SAI internal registers */
__HAL_SAI_DISABLE(&haudio_out_sai);
/* Update the SAI audio frame slot configuration */
haudio_out_sai.Init.MonoStereoMode = SAI_MONOMODE;
HAL_SAI_Init(&haudio_out_sai);
/* Enable SAI peripheral to generate MCLK */
__HAL_SAI_ENABLE(&haudio_out_sai);
}
}
/**
* @brief Updates the Audio frame slot configuration.
* @param AudioFrameSlot: specifies the audio Frame slot
* This parameter can be any value of @ref CODEC_AudioFrame_SLOT_TDMMode
* @note This API should be called after the BSP_AUDIO_OUT_Init() to adjust the
* audio frame slot.
*/
void BSP_AUDIO_OUT_SetAudioFrameSlot(uint32_t AudioFrameSlot)
{
/* Disable SAI peripheral to allow access to SAI internal registers */
__HAL_SAI_DISABLE(&haudio_out_sai);
/* Update the SAI audio frame slot configuration */
haudio_out_sai.SlotInit.SlotActive = AudioFrameSlot;
HAL_SAI_Init(&haudio_out_sai);
/* Enable SAI peripheral to generate MCLK */
__HAL_SAI_ENABLE(&haudio_out_sai);
}
/**
* @brief Deinit the audio peripherals.
*/
void BSP_AUDIO_OUT_DeInit(void)
{
SAIx_DeInit();
/* DeInit the SAI MSP : this __weak function can be rewritten by the applic */
BSP_AUDIO_OUT_MspDeInit(&haudio_out_sai, NULL);
/* Reset the audio output context */
memset(&audio_drv, 0, sizeof(audio_drv));
}
/**
* @brief Tx Transfer completed callbacks.
* @param hsai: SAI handle
*/
void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai)
{
/* Manage the remaining file size and new address offset: This function
should be coded by user (its prototype is already declared in stm32469i_discovery_audio.h) */
BSP_AUDIO_OUT_TransferComplete_CallBack();
}
/**
* @brief Tx Half Transfer completed callbacks.
* @param hsai: SAI handle
*/
void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai)
{
/* Manage the remaining file size and new address offset: This function
should be coded by user (its prototype is already declared in stm32469i_discovery_audio.h) */
BSP_AUDIO_OUT_HalfTransfer_CallBack();
}
/**
* @brief SAI error callbacks.
* @param hsai: SAI handle
*/
void HAL_SAI_ErrorCallback(SAI_HandleTypeDef *hsai)
{
BSP_AUDIO_OUT_Error_CallBack();
}
/**
* @brief Manages the DMA full Transfer complete event.
*/
__weak void BSP_AUDIO_OUT_TransferComplete_CallBack(void)
{
}
/**
* @brief Manages the DMA Half Transfer complete event.
*/
__weak void BSP_AUDIO_OUT_HalfTransfer_CallBack(void)
{
}
/**
* @brief Manages the DMA FIFO error event.
*/
__weak void BSP_AUDIO_OUT_Error_CallBack(void)
{
}
/**
* @brief Initializes BSP_AUDIO_OUT MSP.
* @param hsai: SAI handle
* @param Params : pointer on additional configuration parameters, can be NULL.
*/
__weak void BSP_AUDIO_OUT_MspInit(SAI_HandleTypeDef *hsai, void *Params)
{
static DMA_HandleTypeDef hdma_sai_tx;
GPIO_InitTypeDef gpio_init_structure;
/* Put CS43L2 codec reset high -----------------------------------*/
AUDIO_RESET_ENABLE();
gpio_init_structure.Pin = AUDIO_RESET_PIN;
gpio_init_structure.Mode = GPIO_MODE_OUTPUT_PP;
gpio_init_structure.Pull = GPIO_NOPULL;
gpio_init_structure.Speed = GPIO_SPEED_HIGH;
HAL_GPIO_Init(AUDIO_RESET_GPIO_PORT, &gpio_init_structure);
HAL_GPIO_WritePin(AUDIO_RESET_GPIO_PORT, AUDIO_RESET_PIN, GPIO_PIN_SET);
/* Enable SAI clock */
AUDIO_SAIx_CLK_ENABLE();
/* Enable GPIO clock */
AUDIO_SAIx_MCLK_ENABLE();
AUDIO_SAIx_SCK_SD_FS_ENABLE();
/* CODEC_SAI pins configuration: MCK pin -----------------------------------*/
gpio_init_structure.Pin = AUDIO_SAIx_MCK_PIN;
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Pull = GPIO_NOPULL;
gpio_init_structure.Speed = GPIO_SPEED_HIGH;
gpio_init_structure.Alternate = AUDIO_SAIx_MCLK_SCK_SD_FS_AF;
HAL_GPIO_Init(AUDIO_SAIx_MCLK_GPIO_PORT, &gpio_init_structure);
/* CODEC_SAI pins configuration: FS, SCK, MCK and SD pins ------------------*/
gpio_init_structure.Pin = AUDIO_SAIx_FS_PIN | AUDIO_SAIx_SCK_PIN | AUDIO_SAIx_SD_PIN;
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Pull = GPIO_NOPULL;
gpio_init_structure.Speed = GPIO_SPEED_HIGH;
gpio_init_structure.Alternate = AUDIO_SAIx_MCLK_SCK_SD_FS_AF;
HAL_GPIO_Init(AUDIO_SAIx_SCK_SD_FS_GPIO_PORT, &gpio_init_structure);
/* Enable the DMA clock */
AUDIO_SAIx_DMAx_CLK_ENABLE();
if(hsai->Instance == AUDIO_SAIx)
{
/* Configure the hdma_saiTx handle parameters */
hdma_sai_tx.Init.Channel = AUDIO_SAIx_DMAx_CHANNEL;
hdma_sai_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_sai_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sai_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_sai_tx.Init.PeriphDataAlignment = AUDIO_SAIx_DMAx_PERIPH_DATA_SIZE;
hdma_sai_tx.Init.MemDataAlignment = AUDIO_SAIx_DMAx_MEM_DATA_SIZE;
hdma_sai_tx.Init.Mode = DMA_CIRCULAR;
hdma_sai_tx.Init.Priority = DMA_PRIORITY_HIGH;
hdma_sai_tx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_sai_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_sai_tx.Init.MemBurst = DMA_MBURST_SINGLE;
hdma_sai_tx.Init.PeriphBurst = DMA_PBURST_SINGLE;
hdma_sai_tx.Instance = AUDIO_SAIx_DMAx_STREAM;
/* Associate the DMA handle */
__HAL_LINKDMA(hsai, hdmatx, hdma_sai_tx);
/* Deinitialize the Stream for new transfer */
HAL_DMA_DeInit(&hdma_sai_tx);
/* Configure the DMA Stream */
HAL_DMA_Init(&hdma_sai_tx);
}
/* SAI DMA IRQ Channel configuration */
HAL_NVIC_SetPriority(AUDIO_SAIx_DMAx_IRQ, AUDIO_OUT_IRQ_PREPRIO, 0);
HAL_NVIC_EnableIRQ(AUDIO_SAIx_DMAx_IRQ);
}
/**
* @brief Deinitializes BSP_AUDIO_OUT MSP.
* @param hsai: SAI handle
* @param Params : pointer on additional configuration parameters, can be NULL.
*/
__weak void BSP_AUDIO_OUT_MspDeInit(SAI_HandleTypeDef *hsai, void *Params)
{
GPIO_InitTypeDef gpio_init_structure;
/* SAI DMA IRQ Channel deactivation */
HAL_NVIC_DisableIRQ(AUDIO_SAIx_DMAx_IRQ);
if(hsai->Instance == AUDIO_SAIx)
{
/* Deinitialize the DMA stream */
HAL_DMA_DeInit(hsai->hdmatx);
}
/* Disable SAI peripheral */
__HAL_SAI_DISABLE(hsai);
/* Put CS43L2 codec reset low -----------------------------------*/
HAL_GPIO_WritePin(AUDIO_RESET_GPIO_PORT, AUDIO_RESET_PIN, GPIO_PIN_RESET);
/* Deactives CODEC_SAI pins FS, SCK, MCK and SD by putting them in input mode */
gpio_init_structure.Pin = AUDIO_SAIx_MCK_PIN;
HAL_GPIO_DeInit(AUDIO_SAIx_MCLK_GPIO_PORT, gpio_init_structure.Pin);
gpio_init_structure.Pin = AUDIO_SAIx_FS_PIN | AUDIO_SAIx_SCK_PIN | AUDIO_SAIx_SD_PIN;
HAL_GPIO_DeInit(AUDIO_SAIx_SCK_SD_FS_GPIO_PORT, gpio_init_structure.Pin);
gpio_init_structure.Pin = AUDIO_RESET_PIN;
HAL_GPIO_DeInit(AUDIO_RESET_GPIO_PORT, gpio_init_structure.Pin);
/* Disable SAI clock */
AUDIO_SAIx_CLK_DISABLE();
/* GPIO pins clock and DMA clock can be shut down in the applic
by surcgarging this __weak function */
}
/**
* @brief Clock Config.
* @param hsai: might be required to set audio peripheral predivider if any.
* @param AudioFreq: Audio frequency used to play the audio stream.
* @note This API is called by BSP_AUDIO_OUT_Init() and BSP_AUDIO_OUT_SetFrequency()
* Being __weak it can be overwritten by the application
* @param Params : pointer on additional configuration parameters, can be NULL.
*/
__weak void BSP_AUDIO_OUT_ClockConfig(SAI_HandleTypeDef *hsai, uint32_t AudioFreq, void *Params)
{
RCC_PeriphCLKInitTypeDef rcc_ex_clk_init_struct;
HAL_RCCEx_GetPeriphCLKConfig(&rcc_ex_clk_init_struct);
/* Set the PLL configuration according to the audio frequency */
if((AudioFreq == AUDIO_FREQUENCY_11K) || (AudioFreq == AUDIO_FREQUENCY_22K) || (AudioFreq == AUDIO_FREQUENCY_44K))
{
/* Configure PLLI2S prescalers */
/* PLLI2S_VCO: VCO_429M
I2S_CLK(first level) = PLLI2S_VCO/PLLI2SQ = 429/2 = 214.5 Mhz
I2S_CLK_x = I2S_CLK(first level)/PLLI2SDIVQ = 214.5/19 = 11.289 Mhz */
rcc_ex_clk_init_struct.PeriphClockSelection = RCC_PERIPHCLK_SAI_PLLI2S;
rcc_ex_clk_init_struct.PLLI2S.PLLI2SN = 429;
rcc_ex_clk_init_struct.PLLI2S.PLLI2SQ = 2;
rcc_ex_clk_init_struct.PLLI2SDivQ = 19;
HAL_RCCEx_PeriphCLKConfig(&rcc_ex_clk_init_struct);
}
else /* AUDIO_FREQUENCY_8K, AUDIO_FREQUENCY_16K, AUDIO_FREQUENCY_48K), AUDIO_FREQUENCY_96K */
{
/* SAI clock config
PLLSAI_VCO: VCO_344M
I2S_CLK(first level) = PLLI2S_VCO/PLLI2SQ = 344/7 = 49.142 Mhz
I2S_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ = 49.142/1 = 49.142 Mhz */
rcc_ex_clk_init_struct.PeriphClockSelection = RCC_PERIPHCLK_SAI_PLLI2S;
rcc_ex_clk_init_struct.PLLI2S.PLLI2SN = 344;
rcc_ex_clk_init_struct.PLLI2S.PLLI2SQ = 7;
rcc_ex_clk_init_struct.PLLI2SDivQ = 1;
HAL_RCCEx_PeriphCLKConfig(&rcc_ex_clk_init_struct);
}
}
/*******************************************************************************
Static Functions
*******************************************************************************/
/**
* @brief Initializes the Audio Codec audio interface (SAI).
* @param AudioFreq: Audio frequency to be configured for the SAI peripheral.
* @note The default SlotActive configuration is set to CODEC_AUDIOFRAME_SLOT_0123
* and user can update this configuration using
*/
static uint8_t SAIx_Init(uint32_t AudioFreq)
{
uint8_t ret = AUDIO_OK;
/* Initialize the haudio_out_sai Instance parameter */
haudio_out_sai.Instance = AUDIO_SAIx;
/* Disable SAI peripheral to allow access to SAI internal registers */
__HAL_SAI_DISABLE(&haudio_out_sai);
/* Configure SAI_Block_x
LSBFirst: Disabled
DataSize: 16 */
haudio_out_sai.Init.AudioFrequency = AudioFreq;
haudio_out_sai.Init.ClockSource = SAI_CLKSOURCE_PLLI2S;
haudio_out_sai.Init.AudioMode = SAI_MODEMASTER_TX;
haudio_out_sai.Init.NoDivider = SAI_MASTERDIVIDER_ENABLE;
haudio_out_sai.Init.Protocol = SAI_FREE_PROTOCOL;
haudio_out_sai.Init.DataSize = SAI_DATASIZE_16;
haudio_out_sai.Init.FirstBit = SAI_FIRSTBIT_MSB;
haudio_out_sai.Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE;
haudio_out_sai.Init.Synchro = SAI_ASYNCHRONOUS;
haudio_out_sai.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLE;
haudio_out_sai.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF;
/*
haudio_out_sai.Init.AudioFrequency = SAI_AUDIO_FREQUENCY_MCKDIV;
haudio_out_sai.Init.SynchroExt = SAI_SYNCEXT_DISABLE;
haudio_out_sai.Init.Mckdiv = SAIClockDivider(AudioFreq);
haudio_out_sai.Init.MonoStereoMode = SAI_STEREOMODE;
haudio_out_sai.Init.CompandingMode = SAI_NOCOMPANDING;
haudio_out_sai.Init.TriState = SAI_OUTPUT_NOTRELEASED;
*/
/* Configure SAI_Block_x Frame
Frame Length: 64
Frame active Length: 32
FS Definition: Start frame + Channel Side identification
FS Polarity: FS active Low
FS Offset: FS asserted one bit before the first bit of slot 0 */
haudio_out_sai.FrameInit.FrameLength = 64;
haudio_out_sai.FrameInit.ActiveFrameLength = 32;
haudio_out_sai.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION;
haudio_out_sai.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW;
haudio_out_sai.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT;
/* Configure SAI Block_x Slot
Slot First Bit Offset: 0
Slot Size : 16
Slot Number: 4
Slot Active: All slot actives */
haudio_out_sai.SlotInit.FirstBitOffset = 0;
haudio_out_sai.SlotInit.SlotSize = SAI_SLOTSIZE_DATASIZE;
haudio_out_sai.SlotInit.SlotNumber = 4;
haudio_out_sai.SlotInit.SlotActive = CODEC_AUDIOFRAME_SLOT_0123;
/* Initializes the SAI peripheral*/
if (HAL_SAI_Init(&haudio_out_sai) != HAL_OK)
{
ret = AUDIO_ERROR;
}
/* Enable SAI peripheral to generate MCLK */
__HAL_SAI_ENABLE(&haudio_out_sai);
return ret;
}
/**
* @brief Deinitializes the Audio Codec audio interface (SAI).
*/
static void SAIx_DeInit(void)
{
/* Initialize the hAudioOutSai Instance parameter */
haudio_out_sai.Instance = AUDIO_SAIx;
/* Disable SAI peripheral */
__HAL_SAI_DISABLE(&haudio_out_sai);
HAL_SAI_DeInit(&haudio_out_sai);
}
/**
* @}
*/
/** @defgroup STM32469I-Discovery_AUDIO_in_Private_Functions STM32469I Discovery AUDIO IN Private functions
* @{
*/
/**
* @brief Initializes wave recording.
* @note This function assumes that the I2S input clock (through PLL_R in
* Devices RevA/Z and through dedicated PLLI2S_R in Devices RevB/Y)
* is already configured and ready to be used.
* @param AudioFreq: Audio frequency to be configured for the I2S peripheral.
* @param BitRes: Audio frequency to be configured for the I2S peripheral.
* @param ChnlNbr: Audio frequency to be configured for the I2S peripheral.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_Init(uint32_t AudioFreq, uint32_t BitRes, uint32_t ChnlNbr)
{
/* DeInit the I2S */
I2Sx_DeInit();
/* Configure PLL clock */
BSP_AUDIO_IN_ClockConfig(&haudio_in_i2s, NULL);
/* Configure the PDM library */
PDMDecoder_Init(AudioFreq, ChnlNbr, ChnlNbr);
/* Configure the I2S peripheral */
haudio_in_i2s.Instance = AUDIO_I2Sx;
if(HAL_I2S_GetState(&haudio_in_i2s) == HAL_I2S_STATE_RESET)
{
/* Initialize the I2S Msp: this __weak function can be rewritten by the application */
BSP_AUDIO_IN_MspInit(&haudio_in_i2s, NULL);
}
I2Sx_Init(AudioFreq);
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
/**
* @brief Starts audio recording.
* @param pbuf: Main buffer pointer for the recorded data storing
* @param size: Current size of the recorded buffer
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_Record(uint16_t* pbuf, uint32_t size)
{
uint32_t ret = AUDIO_ERROR;
/* Start the process receive DMA */
HAL_I2S_Receive_DMA(&haudio_in_i2s, pbuf, size);
/* Return AUDIO_OK when all operations are correctly done */
ret = AUDIO_OK;
return ret;
}
/**
* @brief Stops audio recording.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_Stop(void)
{
uint32_t ret = AUDIO_ERROR;
/* Call the Media layer pause function */
HAL_I2S_DMAPause(&haudio_in_i2s);
/* TIMx Peripheral clock disable */
AUDIO_TIMx_CLK_DISABLE();
/* Return AUDIO_OK when all operations are correctly done */
ret = AUDIO_OK;
return ret;
}
/**
* @brief Pauses the audio file stream.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_Pause(void)
{
/* Call the Media layer pause function */
HAL_I2S_DMAPause(&haudio_in_i2s);
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
/**
* @brief Resumes the audio file stream.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_Resume(void)
{
/* Call the Media layer pause/resume function */
HAL_I2S_DMAResume(&haudio_in_i2s);
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
/**
* @brief Controls the audio in volume level.
* @param Volume: Volume level to be set in percentage from 0% to 100% (0 for
* Mute and 100 for Max volume level).
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_SetVolume(uint8_t Volume)
{
/* Set the Global variable AudioInVolume */
AudioInVolume = Volume;
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
/**
* @brief Deinit the audio IN peripherals.
*/
void BSP_AUDIO_IN_DeInit(void)
{
I2Sx_DeInit();
/* DeInit the I2S MSP : this __weak function can be rewritten by the applic */
BSP_AUDIO_IN_MspDeInit(&haudio_in_i2s, NULL);
TIMx_DeInit();
}
/**
* @brief Converts audio format from PDM to PCM.
* @param PDMBuf: Pointer to data PDM buffer
* @param PCMBuf: Pointer to data PCM buffer
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_PDMToPCM(uint16_t* PDMBuf, uint16_t* PCMBuf)
{
uint8_t app_pdm[INTERNAL_BUFF_SIZE*2];
uint8_t byte1 = 0, byte2 = 0;
uint32_t index = 0;
/* PDM Demux */
for(index = 0; index<INTERNAL_BUFF_SIZE/2; index++)
{
byte2 = (PDMBuf[index] >> 8)& 0xFF;
byte1 = (PDMBuf[index] & 0xFF);
app_pdm[(index*2)+1] = Channel_Demux[byte1 & CHANNEL_DEMUX_MASK] | Channel_Demux[byte2 & CHANNEL_DEMUX_MASK] << 4;
app_pdm[(index*2)] = Channel_Demux[(byte1 >> 1) & CHANNEL_DEMUX_MASK] | Channel_Demux[(byte2 >> 1) & CHANNEL_DEMUX_MASK] << 4;
}
for(index = 0; index < DEFAULT_AUDIO_IN_CHANNEL_NBR; index++)
{
/* PDM to PCM filter */
PDM_Filter((uint8_t*)&app_pdm[index], (uint16_t*)&(PCMBuf[index]), &PDM_FilterHandler[index]);
}
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
/**
* @brief Rx Transfer completed callbacks.
* @param hi2s: I2S handle
*/
void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Call the record update function to get the next buffer to fill and its size (size is ignored) */
BSP_AUDIO_IN_TransferComplete_CallBack();
}
/**
* @brief Rx Half Transfer completed callbacks.
* @param hi2s: I2S handle
*/
void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Manage the remaining file size and new address offset: This function
should be coded by user (its prototype is already declared in stm32469i_discovery_audio.h) */
BSP_AUDIO_IN_HalfTransfer_CallBack();
}
/**
* @brief I2S error callbacks.
* @param hi2s: I2S handle
*/
void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s)
{
/* Manage the error generated on DMA FIFO: This function
should be coded by user (its prototype is already declared in stm32469i_discovery_audio.h) */
BSP_AUDIO_IN_Error_Callback();
}
/**
* @brief Clock Config.
* @param hi2s: I2S handle
* @param Params : pointer on additional configuration parameters, can be NULL.
* @note This API is called by BSP_AUDIO_IN_Init()
* Being __weak it can be overwritten by the application
*/
__weak void BSP_AUDIO_IN_ClockConfig(I2S_HandleTypeDef *hi2s, void *Params)
{
RCC_PeriphCLKInitTypeDef RCC_ExCLKInitStruct;
HAL_RCCEx_GetPeriphCLKConfig(&RCC_ExCLKInitStruct);
RCC_ExCLKInitStruct.PeriphClockSelection = RCC_PERIPHCLK_I2S;
RCC_ExCLKInitStruct.PLLI2S.PLLI2SN = 384;
RCC_ExCLKInitStruct.PLLI2S.PLLI2SR = 2;
HAL_RCCEx_PeriphCLKConfig(&RCC_ExCLKInitStruct);
}
/**
* @brief User callback when record buffer is filled.
*/
__weak void BSP_AUDIO_IN_TransferComplete_CallBack(void)
{
/* This function should be implemented by the user application.
It is called into this driver when the current buffer is filled
to prepare the next buffer pointer and its size. */
}
/**
* @brief Manages the DMA Half Transfer complete event.
*/
__weak void BSP_AUDIO_IN_HalfTransfer_CallBack(void)
{
/* This function should be implemented by the user application.
It is called into this driver when the current buffer is filled
to prepare the next buffer pointer and its size. */
}
/**
* @brief Audio IN Error callback function.
*/
__weak void BSP_AUDIO_IN_Error_Callback(void)
{
/* This function is called when an Interrupt due to transfer error on or peripheral
error occurs. */
}
/**
* @brief BSP AUDIO IN MSP Init.
* @param hi2s: I2S handle
* @param Params : pointer on additional configuration parameters, can be NULL.
*/
__weak void BSP_AUDIO_IN_MspInit(I2S_HandleTypeDef *hi2s, void *Params)
{
static DMA_HandleTypeDef hdma_i2s_rx;
GPIO_InitTypeDef gpio_init_structure;
/* Configure the Timer which clocks the MEMS */
/* Moved inside MSP to allow applic to redefine the TIMx_MspInit */
TIMx_Init();
/* Enable I2S clock */
AUDIO_I2Sx_CLK_ENABLE();
/* Enable SCK and SD GPIO clock */
AUDIO_I2Sx_SD_GPIO_CLK_ENABLE();
AUDIO_I2Sx_SCK_GPIO_CLK_ENABLE();
/* CODEC_I2S pins configuration: SCK and SD pins */
gpio_init_structure.Pin = AUDIO_I2Sx_SCK_PIN;
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Pull = GPIO_NOPULL;
gpio_init_structure.Speed = GPIO_SPEED_FAST;
gpio_init_structure.Alternate = AUDIO_I2Sx_SCK_AF;
HAL_GPIO_Init(AUDIO_I2Sx_SCK_GPIO_PORT, &gpio_init_structure);
gpio_init_structure.Pin = AUDIO_I2Sx_SD_PIN;
gpio_init_structure.Alternate = AUDIO_I2Sx_SD_AF;
HAL_GPIO_Init(AUDIO_I2Sx_SD_GPIO_PORT, &gpio_init_structure);
/* Enable PD12 (I2S3_CLK) connected to PB3 via jamper JP4 */
/* on Eval this was provided by PC6 (initialized in TIMx section) */
/*
gpio_init_structure.Pin = GPIO_PIN_12;
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Pull = GPIO_NOPULL;
gpio_init_structure.Speed = GPIO_SPEED_FAST;
gpio_init_structure.Alternate = AUDIO_I2Sx_SCK_AF;
HAL_GPIO_Init(GPIOD, &gpio_init_structure); */
/* Enable the DMA clock */
AUDIO_I2Sx_DMAx_CLK_ENABLE();
if(hi2s->Instance == AUDIO_I2Sx)
{
/* Configure the hdma_i2sRx handle parameters */
hdma_i2s_rx.Init.Channel = AUDIO_I2Sx_DMAx_CHANNEL;
hdma_i2s_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_i2s_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_i2s_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_i2s_rx.Init.PeriphDataAlignment = AUDIO_I2Sx_DMAx_PERIPH_DATA_SIZE;
hdma_i2s_rx.Init.MemDataAlignment = AUDIO_I2Sx_DMAx_MEM_DATA_SIZE;
hdma_i2s_rx.Init.Mode = DMA_CIRCULAR;
hdma_i2s_rx.Init.Priority = DMA_PRIORITY_HIGH;
hdma_i2s_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
hdma_i2s_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_i2s_rx.Init.MemBurst = DMA_MBURST_SINGLE;
hdma_i2s_rx.Init.PeriphBurst = DMA_MBURST_SINGLE;
hdma_i2s_rx.Instance = AUDIO_I2Sx_DMAx_STREAM;
/* Associate the DMA handle */
__HAL_LINKDMA(hi2s, hdmarx, hdma_i2s_rx);
/* Deinitialize the Stream for new transfer */
HAL_DMA_DeInit(&hdma_i2s_rx);
/* Configure the DMA Stream */
HAL_DMA_Init(&hdma_i2s_rx);
}
/* I2S DMA IRQ Channel configuration */
HAL_NVIC_SetPriority(AUDIO_I2Sx_DMAx_IRQ, AUDIO_IN_IRQ_PREPRIO, 0);
HAL_NVIC_EnableIRQ(AUDIO_I2Sx_DMAx_IRQ);
}
/**
* @brief DeInitializes BSP_AUDIO_IN MSP.
* @param hi2s: I2S handle
* @param Params : pointer on additional configuration parameters, can be NULL.
*/
__weak void BSP_AUDIO_IN_MspDeInit(I2S_HandleTypeDef *hi2s, void *Params)
{
GPIO_InitTypeDef gpio_init_structure;
/* I2S DMA IRQ Channel deactivation */
HAL_NVIC_DisableIRQ(AUDIO_I2Sx_DMAx_IRQ);
if(hi2s->Instance == AUDIO_I2Sx)
{
/* Deinitialize the Stream for new transfer */
HAL_DMA_DeInit(hi2s->hdmarx);
}
/* Disable I2S block */
__HAL_I2S_DISABLE(hi2s);
/* Disable pins: SCK and SD pins */
gpio_init_structure.Pin = AUDIO_I2Sx_SCK_PIN;
HAL_GPIO_DeInit(AUDIO_I2Sx_SCK_GPIO_PORT, gpio_init_structure.Pin);
gpio_init_structure.Pin = AUDIO_I2Sx_SD_PIN;
HAL_GPIO_DeInit(AUDIO_I2Sx_SD_GPIO_PORT, gpio_init_structure.Pin);
/* Disable I2S clock */
AUDIO_I2Sx_CLK_DISABLE();
/* GPIO pins clock and DMA clock can be shut down in the applic
by surcgarging this __weak function */
}
/*******************************************************************************
Static Functions
*******************************************************************************/
/**
* @brief Initializes the PDM library.
* @param AudioFreq: Audio sampling frequency
* @param ChnlNbrIn: Number of input audio channels in the PDM buffer
* @param ChnlNbrOut: Number of desired output audio channels in the resulting PCM buffer
* Number of audio channels (1: mono; 2: stereo)
*/
static void PDMDecoder_Init(uint32_t AudioFreq, uint32_t ChnlNbrIn, uint32_t ChnlNbrOut)
{
uint32_t index = 0;
/* Enable CRC peripheral to unlock the PDM library */
__HAL_RCC_CRC_CLK_ENABLE();
for(index = 0; index < ChnlNbrIn; index++)
{
/* Init PDM filters */
PDM_FilterHandler[index].bit_order = PDM_FILTER_BIT_ORDER_LSB;
PDM_FilterHandler[index].endianness = PDM_FILTER_ENDIANNESS_LE;
PDM_FilterHandler[index].high_pass_tap = 2122358088;
PDM_FilterHandler[index].out_ptr_channels = ChnlNbrOut;
PDM_FilterHandler[index].in_ptr_channels = ChnlNbrIn;
PDM_Filter_Init((PDM_Filter_Handler_t *)(&PDM_FilterHandler[index]));
/* PDM lib config phase */
PDM_FilterConfig[index].output_samples_number = AudioFreq/1000;
PDM_FilterConfig[index].mic_gain = 24;
PDM_FilterConfig[index].decimation_factor = PDM_FILTER_DEC_FACTOR_64;
PDM_Filter_setConfig((PDM_Filter_Handler_t *)&PDM_FilterHandler[index], &PDM_FilterConfig[index]);
}
}
/**
* @brief Initializes the Audio Codec audio interface (I2S)
* @note This function assumes that the I2S input clock (through dedicated PLLI2S_R)
* is already configured and ready to be used.
* @param AudioFreq: Audio frequency to be configured for the I2S peripheral.
*/
static void I2Sx_Init(uint32_t AudioFreq)
{
/* Initialize the haudio_in_i2s Instance parameter */
haudio_in_i2s.Instance = AUDIO_I2Sx;
/* Disable I2S block */
__HAL_I2S_DISABLE(&haudio_in_i2s);
/* I2S2 peripheral configuration */
haudio_in_i2s.Init.AudioFreq = 4 * AudioFreq;
haudio_in_i2s.Init.ClockSource = I2S_CLOCK_PLL;
haudio_in_i2s.Init.CPOL = I2S_CPOL_LOW;
haudio_in_i2s.Init.DataFormat = I2S_DATAFORMAT_16B;
haudio_in_i2s.Init.MCLKOutput = I2S_MCLKOUTPUT_DISABLE;
haudio_in_i2s.Init.Mode = I2S_MODE_MASTER_RX;
haudio_in_i2s.Init.Standard = I2S_STANDARD_LSB;
/* Init the I2S */
HAL_I2S_Init(&haudio_in_i2s);
/* Disable I2S block */
__HAL_I2S_ENABLE(&haudio_in_i2s);
}
/**
* @brief Deinitializes the Audio Codec audio interface (I2S).
*/
static void I2Sx_DeInit(void)
{
/* Initialize the hAudioInI2s Instance parameter */
haudio_in_i2s.Instance = AUDIO_I2Sx;
/* Disable I2S block */
__HAL_I2S_DISABLE(&haudio_in_i2s);
/* DeInit the I2S */
HAL_I2S_DeInit(&haudio_in_i2s);
}
/**
* @brief Initializes the TIM INput Capture MSP.
* @param htim: TIM handle
*/
static void TIMx_IC_MspInit(TIM_HandleTypeDef *htim)
{
GPIO_InitTypeDef gpio_init_structure;
/* Enable peripherals and GPIO Clocks --------------------------------------*/
/* TIMx Peripheral clock enable */
AUDIO_TIMx_CLK_ENABLE();
/* Enable GPIO Channels Clock */
AUDIO_TIMx_GPIO_CLK_ENABLE();
/* Configure I/Os ----------------------------------------------------------*/
/* Common configuration for all channels */
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Pull = GPIO_NOPULL;
gpio_init_structure.Speed = GPIO_SPEED_HIGH;
gpio_init_structure.Alternate = AUDIO_TIMx_AF;
/* Configure TIM input channel */
gpio_init_structure.Pin = AUDIO_TIMx_IN_GPIO_PIN;
HAL_GPIO_Init(AUDIO_TIMx_GPIO_PORT, &gpio_init_structure);
/* Configure TIM output channel */
gpio_init_structure.Pin = AUDIO_TIMx_OUT_GPIO_PIN;
HAL_GPIO_Init(AUDIO_TIMx_GPIO_PORT, &gpio_init_structure);
}
/**
* @brief Initializes the TIM INput Capture MSP.
* @param htim: TIM handle
*/
static void TIMx_IC_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Disable TIMx Peripheral clock */
AUDIO_TIMx_CLK_DISABLE();
/* GPIO pins clock and DMA clock can be shut down in the applic
by surcgarging this __weak function */
}
/**
* @brief Configure TIM as a clock divider by 2.
* I2S_SCK is externally connected to TIMx input channel
*/
static void TIMx_Init(void)
{
TIM_IC_InitTypeDef s_ic_config;
TIM_OC_InitTypeDef s_oc_config;
TIM_ClockConfigTypeDef s_clk_source_config;
TIM_SlaveConfigTypeDef s_slave_config;
/* Configure the TIM peripheral --------------------------------------------*/
/* Set TIMx instance */
haudio_tim.Instance = AUDIO_TIMx;
/* Timer Input Capture Configuration Structure declaration */
/* Initialize TIMx peripheral as follow:
+ Period = 0xFFFF
+ Prescaler = 0
+ ClockDivision = 0
+ Counter direction = Up
*/
haudio_tim.Init.Period = 1;
haudio_tim.Init.Prescaler = 0;
haudio_tim.Init.ClockDivision = 0;
haudio_tim.Init.CounterMode = TIM_COUNTERMODE_UP;
/* Initialize the TIMx peripheral with the structure above */
TIMx_IC_MspInit(&haudio_tim);
HAL_TIM_IC_Init(&haudio_tim);
/* Configure the Input Capture channel -------------------------------------*/
/* Configure the Input Capture of channel 2 */
s_ic_config.ICPolarity = TIM_ICPOLARITY_FALLING;
s_ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
s_ic_config.ICPrescaler = TIM_ICPSC_DIV1;
s_ic_config.ICFilter = 0;
HAL_TIM_IC_ConfigChannel(&haudio_tim, &s_ic_config, AUDIO_TIMx_IN_CHANNEL);
/* Select external clock mode 1 */
s_clk_source_config.ClockSource = TIM_CLOCKSOURCE_ETRMODE1;
s_clk_source_config.ClockPolarity = TIM_CLOCKPOLARITY_NONINVERTED;
s_clk_source_config.ClockPrescaler = TIM_CLOCKPRESCALER_DIV1;
s_clk_source_config.ClockFilter = 0;
HAL_TIM_ConfigClockSource(&haudio_tim, &s_clk_source_config);
/* Select Input Channel as input trigger */
s_slave_config.InputTrigger = TIM_TS_TI1FP1;
s_slave_config.SlaveMode = TIM_SLAVEMODE_EXTERNAL1;
s_slave_config.TriggerPolarity = TIM_TRIGGERPOLARITY_NONINVERTED;
s_slave_config.TriggerPrescaler = TIM_CLOCKPRESCALER_DIV1;
s_slave_config.TriggerFilter = 0;
HAL_TIM_SlaveConfigSynchronization(&haudio_tim, &s_slave_config);
/* Output Compare PWM Mode configuration: Channel2 */
s_oc_config.OCMode = TIM_OCMODE_PWM1;
s_oc_config.OCIdleState = TIM_OCIDLESTATE_SET;
s_oc_config.Pulse = 1;
s_oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
s_oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
s_oc_config.OCFastMode = TIM_OCFAST_DISABLE;
s_oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
/* Initialize the TIM3 Channel2 with the structure above */
HAL_TIM_PWM_ConfigChannel(&haudio_tim, &s_oc_config, AUDIO_TIMx_OUT_CHANNEL);
/* Start the TIM3 Channel2 */
HAL_TIM_PWM_Start(&haudio_tim, AUDIO_TIMx_OUT_CHANNEL);
/* Start the TIM3 Channel1 */
HAL_TIM_IC_Start(&haudio_tim, AUDIO_TIMx_IN_CHANNEL);
}
/**
* @brief Configure TIM as a clock divider by 2.
* I2S_SCK is externally connected to TIMx input channel
*/
static void TIMx_DeInit(void)
{
haudio_tim.Instance = AUDIO_TIMx;
/* Stop the TIM3 Channel2 */
HAL_TIM_PWM_Stop(&haudio_tim, AUDIO_TIMx_OUT_CHANNEL);
/* Stop the TIM3 Channel1 */
HAL_TIM_IC_Stop(&haudio_tim, AUDIO_TIMx_IN_CHANNEL);
HAL_TIM_IC_DeInit(&haudio_tim);
/* Initialize the TIMx peripheral with the structure above */
TIMx_IC_MspDeInit(&haudio_tim);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/