Template project for running EEZ Flow firmware project using STM32F469I-DISCO development board
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

755 lines
24 KiB

/**
******************************************************************************
* @file stm32469i_discovery_qspi.c
* @author MCD Application Team
* @brief This file includes a standard driver for the N25Q128A QSPI
* memory mounted on STM32469I-Discovery board.
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) This driver is used to drive the N25Q128A QSPI external
memory mounted on STM32469I-Discovery board.
(#) This driver need a specific component driver N25Q128A to be included with.
(#) Initialization steps:
(++) Initialize the QPSI external memory using the BSP_QSPI_Init() function. This
function includes the MSP layer hardware resources initialization and the
QSPI interface with the external memory.
(#) QSPI memory operations
(++) QSPI memory can be accessed with read/write operations once it is
initialized.
Read/write operation can be performed with AHB access using the functions
BSP_QSPI_Read()/BSP_QSPI_Write().
(++) The function BSP_QSPI_GetInfo() returns the configuration of the QSPI memory.
(see the QSPI memory data sheet)
(++) Perform erase block operation using the function BSP_QSPI_Erase_Block() and by
specifying the block address. You can perform an erase operation of the whole
chip by calling the function BSP_QSPI_Erase_Chip().
(++) The function BSP_QSPI_GetStatus() returns the current status of the QSPI memory.
(see the QSPI memory data sheet)
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32469i_discovery_qspi.h"
/** @addtogroup BSP
* @{
*/
/** @addtogroup STM32469I_Discovery
* @{
*/
/** @defgroup STM32469I_Discovery_QSPI STM32469I Discovery QSPI
* @{
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup STM32469I_Discovery_QSPI_Private_Variables STM32469I Discovery QSPI Private Variables
* @{
*/
QSPI_HandleTypeDef QSPIHandle;
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup STM32469I_Discovery_QSPI_Private_Functions STM32469I Discovery QSPI Private Functions
* @{
*/
static uint8_t QSPI_ResetMemory (QSPI_HandleTypeDef *hqspi);
static uint8_t QSPI_DummyCyclesCfg (QSPI_HandleTypeDef *hqspi);
static uint8_t QSPI_WriteEnable (QSPI_HandleTypeDef *hqspi);
static uint8_t QSPI_AutoPollingMemReady (QSPI_HandleTypeDef *hqspi, uint32_t Timeout);
/**
* @}
*/
/** @defgroup STM32469I_Discovery_QSPI_Exported_Functions STM32469I Discovery QSPI Exported Functions
* @{
*/
/**
* @brief Initializes the QSPI interface.
* @retval QSPI memory status
*/
uint8_t BSP_QSPI_Init(void)
{
QSPIHandle.Instance = QUADSPI;
/* Call the DeInit function to reset the driver */
if (HAL_QSPI_DeInit(&QSPIHandle) != HAL_OK)
{
return QSPI_ERROR;
}
/* System level initialization */
BSP_QSPI_MspInit(&QSPIHandle, NULL);
/* QSPI initialization */
QSPIHandle.Init.ClockPrescaler = 1; /* QSPI Freq= 180 MHz / (1+1) = 90 MHz */
QSPIHandle.Init.FifoThreshold = 1;
QSPIHandle.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE;
QSPIHandle.Init.FlashSize = POSITION_VAL(N25Q128A_FLASH_SIZE) - 1;
QSPIHandle.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_5_CYCLE;
QSPIHandle.Init.ClockMode = QSPI_CLOCK_MODE_0;
QSPIHandle.Init.FlashID = QSPI_FLASH_ID_1;
QSPIHandle.Init.DualFlash = QSPI_DUALFLASH_DISABLE;
if (HAL_QSPI_Init(&QSPIHandle) != HAL_OK)
{
return QSPI_ERROR;
}
/* QSPI memory reset */
if (QSPI_ResetMemory(&QSPIHandle) != QSPI_OK)
{
return QSPI_NOT_SUPPORTED;
}
/* Configuration of the dummy cucles on QSPI memory side */
if (QSPI_DummyCyclesCfg(&QSPIHandle) != QSPI_OK)
{
return QSPI_NOT_SUPPORTED;
}
return QSPI_OK;
}
/**
* @brief De-Initializes the QSPI interface.
* @retval QSPI memory status
*/
uint8_t BSP_QSPI_DeInit(void)
{
QSPIHandle.Instance = QUADSPI;
/* Call the DeInit function to reset the driver */
if (HAL_QSPI_DeInit(&QSPIHandle) != HAL_OK)
{
return QSPI_ERROR;
}
/* System level De-initialization */
BSP_QSPI_MspDeInit(&QSPIHandle, NULL);
return QSPI_OK;
}
/**
* @brief Reads an amount of data from the QSPI memory.
* @param pData: Pointer to data to be read
* @param ReadAddr: Read start address
* @param Size: Size of data to read
* @retval QSPI memory status
*/
uint8_t BSP_QSPI_Read(uint8_t* pData, uint32_t ReadAddr, uint32_t Size)
{
QSPI_CommandTypeDef s_command;
/* Initialize the read command */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = QUAD_INOUT_FAST_READ_CMD;
s_command.AddressMode = QSPI_ADDRESS_4_LINES;
s_command.AddressSize = QSPI_ADDRESS_24_BITS;
s_command.Address = ReadAddr;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_4_LINES;
s_command.DummyCycles = N25Q128A_DUMMY_CYCLES_READ_QUAD;
s_command.NbData = Size;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Configure the command */
if (HAL_QSPI_Command(&QSPIHandle, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Set S# timing for Read command: Min 20ns for N25Q128A memory */
MODIFY_REG(QSPIHandle.Instance->DCR, QUADSPI_DCR_CSHT, QSPI_CS_HIGH_TIME_2_CYCLE);
/* Reception of the data */
if (HAL_QSPI_Receive(&QSPIHandle, pData, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Restore S# timing for nonRead commands */
MODIFY_REG(QSPIHandle.Instance->DCR, QUADSPI_DCR_CSHT, QSPI_CS_HIGH_TIME_5_CYCLE);
return QSPI_OK;
}
/**
* @brief Writes an amount of data to the QSPI memory.
* @param pData: Pointer to data to be written
* @param WriteAddr: Write start address
* @param Size: Size of data to write
* @retval QSPI memory status
*/
uint8_t BSP_QSPI_Write(uint8_t* pData, uint32_t WriteAddr, uint32_t Size)
{
QSPI_CommandTypeDef s_command;
uint32_t end_addr, current_size, current_addr;
/* Calculation of the size between the write address and the end of the page */
current_size = N25Q128A_PAGE_SIZE - (WriteAddr % N25Q128A_PAGE_SIZE);
/* Check if the size of the data is less than the remaining place in the page */
if (current_size > Size)
{
current_size = Size;
}
/* Initialize the address variables */
current_addr = WriteAddr;
end_addr = WriteAddr + Size;
/* Initialize the program command */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = EXT_QUAD_IN_FAST_PROG_CMD;
s_command.AddressMode = QSPI_ADDRESS_4_LINES;
s_command.AddressSize = QSPI_ADDRESS_24_BITS;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_4_LINES;
s_command.DummyCycles = 0;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Perform the write page by page */
do
{
s_command.Address = current_addr;
s_command.NbData = current_size;
/* Enable write operations */
if (QSPI_WriteEnable(&QSPIHandle) != QSPI_OK)
{
return QSPI_ERROR;
}
/* Configure the command */
if (HAL_QSPI_Command(&QSPIHandle, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Transmission of the data */
if (HAL_QSPI_Transmit(&QSPIHandle, pData, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Configure automatic polling mode to wait for end of program */
if (QSPI_AutoPollingMemReady(&QSPIHandle, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != QSPI_OK)
{
return QSPI_ERROR;
}
/* Update the address and size variables for next page programming */
current_addr += current_size;
pData += current_size;
current_size = ((current_addr + N25Q128A_PAGE_SIZE) > end_addr) ? (end_addr - current_addr) : N25Q128A_PAGE_SIZE;
} while (current_addr < end_addr);
return QSPI_OK;
}
/**
* @brief Erases the specified block of the QSPI memory.
* @param BlockAddress: Block address to erase
* @retval QSPI memory status
*/
uint8_t BSP_QSPI_Erase_Block(uint32_t BlockAddress)
{
QSPI_CommandTypeDef s_command;
/* Initialize the erase command */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = SUBSECTOR_ERASE_CMD;
s_command.AddressMode = QSPI_ADDRESS_1_LINE;
s_command.AddressSize = QSPI_ADDRESS_24_BITS;
s_command.Address = BlockAddress;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_NONE;
s_command.DummyCycles = 0;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Enable write operations */
if (QSPI_WriteEnable(&QSPIHandle) != QSPI_OK)
{
return QSPI_ERROR;
}
/* Send the command */
if (HAL_QSPI_Command(&QSPIHandle, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Configure automatic polling mode to wait for end of erase */
if (QSPI_AutoPollingMemReady(&QSPIHandle, N25Q128A_SUBSECTOR_ERASE_MAX_TIME) != QSPI_OK)
{
return QSPI_ERROR;
}
return QSPI_OK;
}
/**
* @brief Erases the entire QSPI memory.
* @retval QSPI memory status
*/
uint8_t BSP_QSPI_Erase_Chip(void)
{
QSPI_CommandTypeDef s_command;
/* Initialize the erase command */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = BULK_ERASE_CMD;
s_command.AddressMode = QSPI_ADDRESS_NONE;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_NONE;
s_command.DummyCycles = 0;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Enable write operations */
if (QSPI_WriteEnable(&QSPIHandle) != QSPI_OK)
{
return QSPI_ERROR;
}
/* Send the command */
if (HAL_QSPI_Command(&QSPIHandle, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Configure automatic polling mode to wait for end of erase */
if (QSPI_AutoPollingMemReady(&QSPIHandle, N25Q128A_BULK_ERASE_MAX_TIME) != QSPI_OK)
{
return QSPI_ERROR;
}
return QSPI_OK;
}
/**
* @brief Reads current status of the QSPI memory.
* @retval QSPI memory status
*/
uint8_t BSP_QSPI_GetStatus(void)
{
QSPI_CommandTypeDef s_command;
uint8_t reg;
/* Initialize the read flag status register command */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = READ_FLAG_STATUS_REG_CMD;
s_command.AddressMode = QSPI_ADDRESS_NONE;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_1_LINE;
s_command.DummyCycles = 0;
s_command.NbData = 1;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Configure the command */
if (HAL_QSPI_Command(&QSPIHandle, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Reception of the data */
if (HAL_QSPI_Receive(&QSPIHandle, &reg, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Check the value of the register */
if ((reg & (N25Q128A_FSR_PRERR | N25Q128A_FSR_VPPERR | N25Q128A_FSR_PGERR | N25Q128A_FSR_ERERR)) != 0)
{
return QSPI_ERROR;
}
else if ((reg & (N25Q128A_FSR_PGSUS | N25Q128A_FSR_ERSUS)) != 0)
{
return QSPI_SUSPENDED;
}
else if ((reg & N25Q128A_FSR_READY) != 0)
{
return QSPI_OK;
}
else
{
return QSPI_BUSY;
}
}
/**
* @brief Reads the configuration of the memory and fills QspiInfo struct
* @param pInfo pointer to Info structure
* @retval QSPI memory status
*/
uint8_t BSP_QSPI_GetInfo(QSPI_InfoTypeDef* pInfo)
{
/* Configure the structure with the memory configuration */
pInfo->FlashSize = N25Q128A_FLASH_SIZE;
pInfo->EraseSectorSize = N25Q128A_SUBSECTOR_SIZE;
pInfo->EraseSectorsNumber = (N25Q128A_FLASH_SIZE/N25Q128A_SUBSECTOR_SIZE);
pInfo->ProgPageSize = N25Q128A_PAGE_SIZE;
pInfo->ProgPagesNumber = (N25Q128A_FLASH_SIZE/N25Q128A_PAGE_SIZE);
return QSPI_OK;
}
/**
* @brief Configure the QSPI in memory-mapped mode
* @retval QSPI memory status
*/
uint8_t BSP_QSPI_EnableMemoryMappedMode(void)
{
QSPI_CommandTypeDef s_command;
QSPI_MemoryMappedTypeDef s_mem_mapped_cfg;
/* Configure the command for the read instruction */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = QUAD_INOUT_FAST_READ_CMD;
s_command.AddressMode = QSPI_ADDRESS_4_LINES;
s_command.AddressSize = QSPI_ADDRESS_24_BITS;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_4_LINES;
s_command.DummyCycles = N25Q128A_DUMMY_CYCLES_READ_QUAD;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Configure the memory mapped mode */
s_mem_mapped_cfg.TimeOutActivation = QSPI_TIMEOUT_COUNTER_DISABLE;
if (HAL_QSPI_MemoryMapped(&QSPIHandle, &s_command, &s_mem_mapped_cfg) != HAL_OK)
{
return QSPI_ERROR;
}
return QSPI_OK;
}
/**
* @}
*/
/** @defgroup STM32469I_Discovery_QSPI_Private_Functions STM32469I Discovery QSPI Private Functions
* @{
*/
/**
* @brief QSPI MSP Initialization
* This function configures the hardware resources used in this example:
* - Peripheral's clock enable
* - Peripheral's GPIO Configuration
* - NVIC configuration for QSPI interrupt
*/
__weak void BSP_QSPI_MspInit(QSPI_HandleTypeDef *hqspi, void *Params)
{
GPIO_InitTypeDef gpio_init_structure;
/*##-1- Enable peripherals and GPIO Clocks #################################*/
/* Enable the QuadSPI memory interface clock */
QSPI_CLK_ENABLE();
/* Reset the QuadSPI memory interface */
QSPI_FORCE_RESET();
QSPI_RELEASE_RESET();
/* Enable GPIO clocks */
QSPI_CS_GPIO_CLK_ENABLE();
QSPI_DX_CLK_GPIO_CLK_ENABLE();
/*##-2- Configure peripheral GPIO ##########################################*/
/* QSPI CS GPIO pin configuration */
gpio_init_structure.Pin = QSPI_CS_PIN;
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Pull = GPIO_PULLUP;
gpio_init_structure.Speed = GPIO_SPEED_HIGH;
gpio_init_structure.Alternate = GPIO_AF10_QSPI;
HAL_GPIO_Init(QSPI_CS_GPIO_PORT, &gpio_init_structure);
/* QSPI CLK GPIO pin configuration */
gpio_init_structure.Pin = QSPI_CLK_PIN;
gpio_init_structure.Pull = GPIO_NOPULL;
gpio_init_structure.Alternate = GPIO_AF9_QSPI;
HAL_GPIO_Init(QSPI_CLK_GPIO_PORT, &gpio_init_structure);
/* QSPI D0 and D1 GPIO pin configuration */
gpio_init_structure.Pin = (QSPI_D0_PIN | QSPI_D1_PIN);
gpio_init_structure.Alternate = GPIO_AF10_QSPI;
HAL_GPIO_Init(QSPI_DX_GPIO_PORT, &gpio_init_structure);
/* QSPI D2 and D3 GPIO pin configuration */
gpio_init_structure.Pin = (QSPI_D2_PIN | QSPI_D3_PIN) ;
gpio_init_structure.Alternate = GPIO_AF9_QSPI;
HAL_GPIO_Init(QSPI_DX_GPIO_PORT, &gpio_init_structure);
/*##-3- Configure the NVIC for QSPI #########################################*/
/* NVIC configuration for QSPI interrupt */
HAL_NVIC_SetPriority(QUADSPI_IRQn, 0x0F, 0);
HAL_NVIC_EnableIRQ(QUADSPI_IRQn);
}
/**
* @brief QSPI MSP De-Initialization
* This function frees the hardware resources used in this example:
* - Disable the Peripheral's clock
* - Revert GPIO and NVIC configuration to their default state
*/
__weak void BSP_QSPI_MspDeInit(QSPI_HandleTypeDef *hqspi, void *Params)
{
/*##-1- Disable the NVIC for QSPI ###########################################*/
HAL_NVIC_DisableIRQ(QUADSPI_IRQn);
/*##-2- Disable peripherals and GPIO Clocks ################################*/
/* De-Configure QSPI pins */
HAL_GPIO_DeInit(QSPI_CS_GPIO_PORT, QSPI_CS_PIN);
HAL_GPIO_DeInit(QSPI_CLK_GPIO_PORT, QSPI_CLK_PIN);
HAL_GPIO_DeInit(QSPI_DX_GPIO_PORT, QSPI_D0_PIN);
HAL_GPIO_DeInit(QSPI_DX_GPIO_PORT, QSPI_D1_PIN);
HAL_GPIO_DeInit(QSPI_DX_GPIO_PORT, QSPI_D2_PIN);
HAL_GPIO_DeInit(QSPI_DX_GPIO_PORT, QSPI_D3_PIN);
/*##-3- Reset peripherals ##################################################*/
/* Reset the QuadSPI memory interface */
QSPI_FORCE_RESET();
QSPI_RELEASE_RESET();
/* Disable the QuadSPI memory interface clock */
QSPI_CLK_DISABLE();
}
/**
* @brief This function reset the QSPI memory.
* @param hqspi: QSPI handle
*/
static uint8_t QSPI_ResetMemory(QSPI_HandleTypeDef *hqspi)
{
QSPI_CommandTypeDef s_command;
/* Initialize the reset enable command */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = RESET_ENABLE_CMD;
s_command.AddressMode = QSPI_ADDRESS_NONE;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_NONE;
s_command.DummyCycles = 0;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Send the command */
if (HAL_QSPI_Command(hqspi, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Send the reset memory command */
s_command.Instruction = RESET_MEMORY_CMD;
if (HAL_QSPI_Command(hqspi, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Configure automatic polling mode to wait the memory is ready */
if (QSPI_AutoPollingMemReady(hqspi, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != QSPI_OK)
{
return QSPI_ERROR;
}
return QSPI_OK;
}
/**
* @brief This function configure the dummy cycles on memory side.
* @param hqspi: QSPI handle
*/
static uint8_t QSPI_DummyCyclesCfg(QSPI_HandleTypeDef *hqspi)
{
QSPI_CommandTypeDef s_command;
uint8_t reg;
/* Initialize the read volatile configuration register command */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = READ_VOL_CFG_REG_CMD;
s_command.AddressMode = QSPI_ADDRESS_NONE;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_1_LINE;
s_command.DummyCycles = 0;
s_command.NbData = 1;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Configure the command */
if (HAL_QSPI_Command(hqspi, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Reception of the data */
if (HAL_QSPI_Receive(hqspi, &reg, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Enable write operations */
if (QSPI_WriteEnable(hqspi) != QSPI_OK)
{
return QSPI_ERROR;
}
/* Update volatile configuration register (with new dummy cycles) */
s_command.Instruction = WRITE_VOL_CFG_REG_CMD;
MODIFY_REG(reg, N25Q128A_VCR_NB_DUMMY, (N25Q128A_DUMMY_CYCLES_READ_QUAD << POSITION_VAL(N25Q128A_VCR_NB_DUMMY)));
/* Configure the write volatile configuration register command */
if (HAL_QSPI_Command(hqspi, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Transmission of the data */
if (HAL_QSPI_Transmit(hqspi, &reg, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
return QSPI_OK;
}
/**
* @brief This function send a Write Enable and wait it is effective.
* @param hqspi: QSPI handle
*/
static uint8_t QSPI_WriteEnable(QSPI_HandleTypeDef *hqspi)
{
QSPI_CommandTypeDef s_command;
QSPI_AutoPollingTypeDef s_config;
/* Enable write operations */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = WRITE_ENABLE_CMD;
s_command.AddressMode = QSPI_ADDRESS_NONE;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_NONE;
s_command.DummyCycles = 0;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
if (HAL_QSPI_Command(hqspi, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
/* Configure automatic polling mode to wait for write enabling */
s_config.Match = N25Q128A_SR_WREN;
s_config.Mask = N25Q128A_SR_WREN;
s_config.MatchMode = QSPI_MATCH_MODE_AND;
s_config.StatusBytesSize = 1;
s_config.Interval = 0x10;
s_config.AutomaticStop = QSPI_AUTOMATIC_STOP_ENABLE;
s_command.Instruction = READ_STATUS_REG_CMD;
s_command.DataMode = QSPI_DATA_1_LINE;
if (HAL_QSPI_AutoPolling(hqspi, &s_command, &s_config, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
return QSPI_ERROR;
}
return QSPI_OK;
}
/**
* @brief This function read the SR of the memory and wait the EOP.
* @param hqspi: QSPI handle
* @param Timeout: timeout value before returning an error
*/
static uint8_t QSPI_AutoPollingMemReady(QSPI_HandleTypeDef *hqspi, uint32_t Timeout)
{
QSPI_CommandTypeDef s_command;
QSPI_AutoPollingTypeDef s_config;
/* Configure automatic polling mode to wait for memory ready */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = READ_STATUS_REG_CMD;
s_command.AddressMode = QSPI_ADDRESS_NONE;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_1_LINE;
s_command.DummyCycles = 0;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
s_config.Match = 0;
s_config.Mask = N25Q128A_SR_WIP;
s_config.MatchMode = QSPI_MATCH_MODE_AND;
s_config.StatusBytesSize = 1;
s_config.Interval = 0x10;
s_config.AutomaticStop = QSPI_AUTOMATIC_STOP_ENABLE;
if (HAL_QSPI_AutoPolling(hqspi, &s_command, &s_config, Timeout) != HAL_OK)
{
return QSPI_ERROR;
}
return QSPI_OK;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/