You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1122 lines
42 KiB
1122 lines
42 KiB
/** |
|
****************************************************************************** |
|
* @file stm32f4xx_hal_rcc.c |
|
* @author MCD Application Team |
|
* @brief RCC HAL module driver. |
|
* This file provides firmware functions to manage the following |
|
* functionalities of the Reset and Clock Control (RCC) peripheral: |
|
* + Initialization and de-initialization functions |
|
* + Peripheral Control functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### RCC specific features ##### |
|
============================================================================== |
|
[..] |
|
After reset the device is running from Internal High Speed oscillator |
|
(HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache |
|
and I-Cache are disabled, and all peripherals are off except internal |
|
SRAM, Flash and JTAG. |
|
(+) There is no prescaler on High speed (AHB) and Low speed (APB) busses; |
|
all peripherals mapped on these busses are running at HSI speed. |
|
(+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
|
(+) All GPIOs are in input floating state, except the JTAG pins which |
|
are assigned to be used for debug purpose. |
|
|
|
[..] |
|
Once the device started from reset, the user application has to: |
|
(+) Configure the clock source to be used to drive the System clock |
|
(if the application needs higher frequency/performance) |
|
(+) Configure the System clock frequency and Flash settings |
|
(+) Configure the AHB and APB busses prescalers |
|
(+) Enable the clock for the peripheral(s) to be used |
|
(+) Configure the clock source(s) for peripherals which clocks are not |
|
derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG) |
|
|
|
##### RCC Limitations ##### |
|
============================================================================== |
|
[..] |
|
A delay between an RCC peripheral clock enable and the effective peripheral |
|
enabling should be taken into account in order to manage the peripheral read/write |
|
from/to registers. |
|
(+) This delay depends on the peripheral mapping. |
|
(+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle |
|
after the clock enable bit is set on the hardware register |
|
(+) If peripheral is mapped on APB: the delay is 2 APB clock cycle |
|
after the clock enable bit is set on the hardware register |
|
|
|
[..] |
|
Implemented Workaround: |
|
(+) For AHB & APB peripherals, a dummy read to the peripheral register has been |
|
inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro. |
|
|
|
@endverbatim |
|
****************************************************************************** |
|
* @attention |
|
* |
|
* Copyright (c) 2017 STMicroelectronics. |
|
* All rights reserved. |
|
* |
|
* This software is licensed under terms that can be found in the LICENSE file in |
|
* the root directory of this software component. |
|
* If no LICENSE file comes with this software, it is provided AS-IS. |
|
****************************************************************************** |
|
*/ |
|
|
|
/* Includes ------------------------------------------------------------------*/ |
|
#include "stm32f4xx_hal.h" |
|
|
|
/** @addtogroup STM32F4xx_HAL_Driver |
|
* @{ |
|
*/ |
|
|
|
/** @defgroup RCC RCC |
|
* @brief RCC HAL module driver |
|
* @{ |
|
*/ |
|
|
|
#ifdef HAL_RCC_MODULE_ENABLED |
|
|
|
/* Private typedef -----------------------------------------------------------*/ |
|
/* Private define ------------------------------------------------------------*/ |
|
/** @addtogroup RCC_Private_Constants |
|
* @{ |
|
*/ |
|
|
|
/* Private macro -------------------------------------------------------------*/ |
|
#define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() |
|
#define MCO1_GPIO_PORT GPIOA |
|
#define MCO1_PIN GPIO_PIN_8 |
|
|
|
#define __MCO2_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE() |
|
#define MCO2_GPIO_PORT GPIOC |
|
#define MCO2_PIN GPIO_PIN_9 |
|
/** |
|
* @} |
|
*/ |
|
|
|
/* Private variables ---------------------------------------------------------*/ |
|
/** @defgroup RCC_Private_Variables RCC Private Variables |
|
* @{ |
|
*/ |
|
/** |
|
* @} |
|
*/ |
|
/* Private function prototypes -----------------------------------------------*/ |
|
/* Private functions ---------------------------------------------------------*/ |
|
|
|
/** @defgroup RCC_Exported_Functions RCC Exported Functions |
|
* @{ |
|
*/ |
|
|
|
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
|
* @brief Initialization and Configuration functions |
|
* |
|
@verbatim |
|
=============================================================================== |
|
##### Initialization and de-initialization functions ##### |
|
=============================================================================== |
|
[..] |
|
This section provides functions allowing to configure the internal/external oscillators |
|
(HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1 |
|
and APB2). |
|
|
|
[..] Internal/external clock and PLL configuration |
|
(#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through |
|
the PLL as System clock source. |
|
|
|
(#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC |
|
clock source. |
|
|
|
(#) HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or |
|
through the PLL as System clock source. Can be used also as RTC clock source. |
|
|
|
(#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. |
|
|
|
(#) PLL (clocked by HSI or HSE), featuring two different output clocks: |
|
(++) The first output is used to generate the high speed system clock (up to 168 MHz) |
|
(++) The second output is used to generate the clock for the USB OTG FS (48 MHz), |
|
the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz). |
|
|
|
(#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE() |
|
and if a HSE clock failure occurs(HSE used directly or through PLL as System |
|
clock source), the System clocks automatically switched to HSI and an interrupt |
|
is generated if enabled. The interrupt is linked to the Cortex-M4 NMI |
|
(Non-Maskable Interrupt) exception vector. |
|
|
|
(#) MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL |
|
clock (through a configurable prescaler) on PA8 pin. |
|
|
|
(#) MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S |
|
clock (through a configurable prescaler) on PC9 pin. |
|
|
|
[..] System, AHB and APB busses clocks configuration |
|
(#) Several clock sources can be used to drive the System clock (SYSCLK): HSI, |
|
HSE and PLL. |
|
The AHB clock (HCLK) is derived from System clock through configurable |
|
prescaler and used to clock the CPU, memory and peripherals mapped |
|
on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived |
|
from AHB clock through configurable prescalers and used to clock |
|
the peripherals mapped on these busses. You can use |
|
"HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. |
|
|
|
(#) For the STM32F405xx/07xx and STM32F415xx/17xx devices, the maximum |
|
frequency of the SYSCLK and HCLK is 168 MHz, PCLK2 84 MHz and PCLK1 42 MHz. |
|
Depending on the device voltage range, the maximum frequency should |
|
be adapted accordingly (refer to the product datasheets for more details). |
|
|
|
(#) For the STM32F42xxx, STM32F43xxx, STM32F446xx, STM32F469xx and STM32F479xx devices, |
|
the maximum frequency of the SYSCLK and HCLK is 180 MHz, PCLK2 90 MHz and PCLK1 45 MHz. |
|
Depending on the device voltage range, the maximum frequency should |
|
be adapted accordingly (refer to the product datasheets for more details). |
|
|
|
(#) For the STM32F401xx, the maximum frequency of the SYSCLK and HCLK is 84 MHz, |
|
PCLK2 84 MHz and PCLK1 42 MHz. |
|
Depending on the device voltage range, the maximum frequency should |
|
be adapted accordingly (refer to the product datasheets for more details). |
|
|
|
(#) For the STM32F41xxx, the maximum frequency of the SYSCLK and HCLK is 100 MHz, |
|
PCLK2 100 MHz and PCLK1 50 MHz. |
|
Depending on the device voltage range, the maximum frequency should |
|
be adapted accordingly (refer to the product datasheets for more details). |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Resets the RCC clock configuration to the default reset state. |
|
* @note The default reset state of the clock configuration is given below: |
|
* - HSI ON and used as system clock source |
|
* - HSE and PLL OFF |
|
* - AHB, APB1 and APB2 prescaler set to 1. |
|
* - CSS, MCO1 and MCO2 OFF |
|
* - All interrupts disabled |
|
* @note This function doesn't modify the configuration of the |
|
* - Peripheral clocks |
|
* - LSI, LSE and RTC clocks |
|
* @retval HAL status |
|
*/ |
|
__weak HAL_StatusTypeDef HAL_RCC_DeInit(void) |
|
{ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initializes the RCC Oscillators according to the specified parameters in the |
|
* RCC_OscInitTypeDef. |
|
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
|
* contains the configuration information for the RCC Oscillators. |
|
* @note The PLL is not disabled when used as system clock. |
|
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not |
|
* supported by this API. User should request a transition to LSE Off |
|
* first and then LSE On or LSE Bypass. |
|
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not |
|
* supported by this API. User should request a transition to HSE Off |
|
* first and then HSE On or HSE Bypass. |
|
* @retval HAL status |
|
*/ |
|
__weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
|
{ |
|
uint32_t tickstart, pll_config; |
|
|
|
/* Check Null pointer */ |
|
if(RCC_OscInitStruct == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
|
/*------------------------------- HSE Configuration ------------------------*/ |
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
|
/* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */ |
|
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) ||\ |
|
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE))) |
|
{ |
|
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
else |
|
{ |
|
/* Set the new HSE configuration ---------------------------------------*/ |
|
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
|
|
|
/* Check the HSE State */ |
|
if((RCC_OscInitStruct->HSEState) != RCC_HSE_OFF) |
|
{ |
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till HSE is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till HSE is bypassed or disabled */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
/*----------------------------- HSI Configuration --------------------------*/ |
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
|
assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
|
|
|
/* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ |
|
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) ||\ |
|
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI))) |
|
{ |
|
/* When HSI is used as system clock it will not disabled */ |
|
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
/* Otherwise, just the calibration is allowed */ |
|
else |
|
{ |
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
|
} |
|
} |
|
else |
|
{ |
|
/* Check the HSI State */ |
|
if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF) |
|
{ |
|
/* Enable the Internal High Speed oscillator (HSI). */ |
|
__HAL_RCC_HSI_ENABLE(); |
|
|
|
/* Get Start Tick*/ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till HSI is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value. */ |
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
|
} |
|
else |
|
{ |
|
/* Disable the Internal High Speed oscillator (HSI). */ |
|
__HAL_RCC_HSI_DISABLE(); |
|
|
|
/* Get Start Tick*/ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till HSI is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
/*------------------------------ LSI Configuration -------------------------*/ |
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
|
|
|
/* Check the LSI State */ |
|
if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF) |
|
{ |
|
/* Enable the Internal Low Speed oscillator (LSI). */ |
|
__HAL_RCC_LSI_ENABLE(); |
|
|
|
/* Get Start Tick*/ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till LSI is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Disable the Internal Low Speed oscillator (LSI). */ |
|
__HAL_RCC_LSI_DISABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till LSI is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
/*------------------------------ LSE Configuration -------------------------*/ |
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
|
{ |
|
FlagStatus pwrclkchanged = RESET; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
|
|
|
/* Update LSE configuration in Backup Domain control register */ |
|
/* Requires to enable write access to Backup Domain of necessary */ |
|
if(__HAL_RCC_PWR_IS_CLK_DISABLED()) |
|
{ |
|
__HAL_RCC_PWR_CLK_ENABLE(); |
|
pwrclkchanged = SET; |
|
} |
|
|
|
if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
|
{ |
|
/* Enable write access to Backup domain */ |
|
SET_BIT(PWR->CR, PWR_CR_DBP); |
|
|
|
/* Wait for Backup domain Write protection disable */ |
|
tickstart = HAL_GetTick(); |
|
|
|
while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
|
{ |
|
if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
|
|
/* Set the new LSE configuration -----------------------------------------*/ |
|
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
|
/* Check the LSE State */ |
|
if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF) |
|
{ |
|
/* Get Start Tick*/ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till LSE is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till LSE is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
|
|
/* Restore clock configuration if changed */ |
|
if(pwrclkchanged == SET) |
|
{ |
|
__HAL_RCC_PWR_CLK_DISABLE(); |
|
} |
|
} |
|
/*-------------------------------- PLL Configuration -----------------------*/ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
|
if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) |
|
{ |
|
/* Check if the PLL is used as system clock or not */ |
|
if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) |
|
{ |
|
if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
|
assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); |
|
assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); |
|
assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); |
|
assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); |
|
|
|
/* Disable the main PLL. */ |
|
__HAL_RCC_PLL_DISABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till PLL is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Configure the main PLL clock source, multiplication and division factors. */ |
|
WRITE_REG(RCC->PLLCFGR, (RCC_OscInitStruct->PLL.PLLSource | \ |
|
RCC_OscInitStruct->PLL.PLLM | \ |
|
(RCC_OscInitStruct->PLL.PLLN << RCC_PLLCFGR_PLLN_Pos) | \ |
|
(((RCC_OscInitStruct->PLL.PLLP >> 1U) - 1U) << RCC_PLLCFGR_PLLP_Pos) | \ |
|
(RCC_OscInitStruct->PLL.PLLQ << RCC_PLLCFGR_PLLQ_Pos))); |
|
/* Enable the main PLL. */ |
|
__HAL_RCC_PLL_ENABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till PLL is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Disable the main PLL. */ |
|
__HAL_RCC_PLL_DISABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till PLL is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Check if there is a request to disable the PLL used as System clock source */ |
|
if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
/* Do not return HAL_ERROR if request repeats the current configuration */ |
|
pll_config = RCC->PLLCFGR; |
|
#if defined (RCC_PLLCFGR_PLLR) |
|
if (((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLM) != (RCC_OscInitStruct->PLL.PLLM) << RCC_PLLCFGR_PLLM_Pos) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLN) != (RCC_OscInitStruct->PLL.PLLN) << RCC_PLLCFGR_PLLN_Pos) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLP) != (((RCC_OscInitStruct->PLL.PLLP >> 1U) - 1U)) << RCC_PLLCFGR_PLLP_Pos) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLQ) != (RCC_OscInitStruct->PLL.PLLQ << RCC_PLLCFGR_PLLQ_Pos)) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLR) != (RCC_OscInitStruct->PLL.PLLR << RCC_PLLCFGR_PLLR_Pos))) |
|
#else |
|
if (((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLM) != (RCC_OscInitStruct->PLL.PLLM) << RCC_PLLCFGR_PLLM_Pos) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLN) != (RCC_OscInitStruct->PLL.PLLN) << RCC_PLLCFGR_PLLN_Pos) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLP) != (((RCC_OscInitStruct->PLL.PLLP >> 1U) - 1U)) << RCC_PLLCFGR_PLLP_Pos) || |
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLQ) != (RCC_OscInitStruct->PLL.PLLQ << RCC_PLLCFGR_PLLQ_Pos))) |
|
#endif |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
} |
|
} |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initializes the CPU, AHB and APB busses clocks according to the specified |
|
* parameters in the RCC_ClkInitStruct. |
|
* @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that |
|
* contains the configuration information for the RCC peripheral. |
|
* @param FLatency FLASH Latency, this parameter depend on device selected |
|
* |
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
|
* and updated by HAL_RCC_GetHCLKFreq() function called within this function |
|
* |
|
* @note The HSI is used (enabled by hardware) as system clock source after |
|
* startup from Reset, wake-up from STOP and STANDBY mode, or in case |
|
* of failure of the HSE used directly or indirectly as system clock |
|
* (if the Clock Security System CSS is enabled). |
|
* |
|
* @note A switch from one clock source to another occurs only if the target |
|
* clock source is ready (clock stable after startup delay or PLL locked). |
|
* If a clock source which is not yet ready is selected, the switch will |
|
* occur when the clock source will be ready. |
|
* |
|
* @note Depending on the device voltage range, the software has to set correctly |
|
* HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency |
|
* (for more details refer to section above "Initialization/de-initialization functions") |
|
* @retval None |
|
*/ |
|
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
|
{ |
|
uint32_t tickstart; |
|
|
|
/* Check Null pointer */ |
|
if(RCC_ClkInitStruct == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
|
assert_param(IS_FLASH_LATENCY(FLatency)); |
|
|
|
/* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
|
must be correctly programmed according to the frequency of the CPU clock |
|
(HCLK) and the supply voltage of the device. */ |
|
|
|
/* Increasing the number of wait states because of higher CPU frequency */ |
|
if(FLatency > __HAL_FLASH_GET_LATENCY()) |
|
{ |
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
|
__HAL_FLASH_SET_LATENCY(FLatency); |
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash |
|
memory by reading the FLASH_ACR register */ |
|
if(__HAL_FLASH_GET_LATENCY() != FLatency) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
/*-------------------------- HCLK Configuration --------------------------*/ |
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
|
{ |
|
/* Set the highest APBx dividers in order to ensure that we do not go through |
|
a non-spec phase whatever we decrease or increase HCLK. */ |
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
|
{ |
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_HCLK_DIV16); |
|
} |
|
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
|
{ |
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, (RCC_HCLK_DIV16 << 3)); |
|
} |
|
|
|
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
|
} |
|
|
|
/*------------------------- SYSCLK Configuration ---------------------------*/ |
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
|
{ |
|
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
|
|
|
/* HSE is selected as System Clock Source */ |
|
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
|
{ |
|
/* Check the HSE ready flag */ |
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
/* PLL is selected as System Clock Source */ |
|
else if((RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) || |
|
(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLRCLK)) |
|
{ |
|
/* Check the PLL ready flag */ |
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
/* HSI is selected as System Clock Source */ |
|
else |
|
{ |
|
/* Check the HSI ready flag */ |
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
__HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) |
|
{ |
|
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
|
|
/* Decreasing the number of wait states because of lower CPU frequency */ |
|
if(FLatency < __HAL_FLASH_GET_LATENCY()) |
|
{ |
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
|
__HAL_FLASH_SET_LATENCY(FLatency); |
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash |
|
memory by reading the FLASH_ACR register */ |
|
if(__HAL_FLASH_GET_LATENCY() != FLatency) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
/*-------------------------- PCLK1 Configuration ---------------------------*/ |
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
|
{ |
|
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); |
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider); |
|
} |
|
|
|
/*-------------------------- PCLK2 Configuration ---------------------------*/ |
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
|
{ |
|
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider)); |
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U)); |
|
} |
|
|
|
/* Update the SystemCoreClock global variable */ |
|
SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_Pos]; |
|
|
|
/* Configure the source of time base considering new system clocks settings */ |
|
HAL_InitTick (uwTickPrio); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
|
* @brief RCC clocks control functions |
|
* |
|
@verbatim |
|
=============================================================================== |
|
##### Peripheral Control functions ##### |
|
=============================================================================== |
|
[..] |
|
This subsection provides a set of functions allowing to control the RCC Clocks |
|
frequencies. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9). |
|
* @note PA8/PC9 should be configured in alternate function mode. |
|
* @param RCC_MCOx specifies the output direction for the clock source. |
|
* This parameter can be one of the following values: |
|
* @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8). |
|
* @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9). |
|
* @param RCC_MCOSource specifies the clock source to output. |
|
* This parameter can be one of the following values: |
|
* @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source |
|
* @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source |
|
* @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source |
|
* @arg RCC_MCO1SOURCE_PLLCLK: main PLL clock selected as MCO1 source |
|
* @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source |
|
* @arg RCC_MCO2SOURCE_PLLI2SCLK: PLLI2S clock selected as MCO2 source, available for all STM32F4 devices except STM32F410xx |
|
* @arg RCC_MCO2SOURCE_I2SCLK: I2SCLK clock selected as MCO2 source, available only for STM32F410Rx devices |
|
* @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source |
|
* @arg RCC_MCO2SOURCE_PLLCLK: main PLL clock selected as MCO2 source |
|
* @param RCC_MCODiv specifies the MCOx prescaler. |
|
* This parameter can be one of the following values: |
|
* @arg RCC_MCODIV_1: no division applied to MCOx clock |
|
* @arg RCC_MCODIV_2: division by 2 applied to MCOx clock |
|
* @arg RCC_MCODIV_3: division by 3 applied to MCOx clock |
|
* @arg RCC_MCODIV_4: division by 4 applied to MCOx clock |
|
* @arg RCC_MCODIV_5: division by 5 applied to MCOx clock |
|
* @note For STM32F410Rx devices to output I2SCLK clock on MCO2 you should have |
|
* at last one of the SPI clocks enabled (SPI1, SPI2 or SPI5). |
|
* @retval None |
|
*/ |
|
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
|
{ |
|
GPIO_InitTypeDef GPIO_InitStruct; |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_MCO(RCC_MCOx)); |
|
assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
|
/* RCC_MCO1 */ |
|
if(RCC_MCOx == RCC_MCO1) |
|
{ |
|
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
|
|
|
/* MCO1 Clock Enable */ |
|
__MCO1_CLK_ENABLE(); |
|
|
|
/* Configure the MCO1 pin in alternate function mode */ |
|
GPIO_InitStruct.Pin = MCO1_PIN; |
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; |
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; |
|
GPIO_InitStruct.Pull = GPIO_NOPULL; |
|
GPIO_InitStruct.Alternate = GPIO_AF0_MCO; |
|
HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct); |
|
|
|
/* Mask MCO1 and MCO1PRE[2:0] bits then Select MCO1 clock source and prescaler */ |
|
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv)); |
|
|
|
/* This RCC MCO1 enable feature is available only on STM32F410xx devices */ |
|
#if defined(RCC_CFGR_MCO1EN) |
|
__HAL_RCC_MCO1_ENABLE(); |
|
#endif /* RCC_CFGR_MCO1EN */ |
|
} |
|
#if defined(RCC_CFGR_MCO2) |
|
else |
|
{ |
|
assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource)); |
|
|
|
/* MCO2 Clock Enable */ |
|
__MCO2_CLK_ENABLE(); |
|
|
|
/* Configure the MCO2 pin in alternate function mode */ |
|
GPIO_InitStruct.Pin = MCO2_PIN; |
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; |
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; |
|
GPIO_InitStruct.Pull = GPIO_NOPULL; |
|
GPIO_InitStruct.Alternate = GPIO_AF0_MCO; |
|
HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct); |
|
|
|
/* Mask MCO2 and MCO2PRE[2:0] bits then Select MCO2 clock source and prescaler */ |
|
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 3U))); |
|
|
|
/* This RCC MCO2 enable feature is available only on STM32F410Rx devices */ |
|
#if defined(RCC_CFGR_MCO2EN) |
|
__HAL_RCC_MCO2_ENABLE(); |
|
#endif /* RCC_CFGR_MCO2EN */ |
|
} |
|
#endif /* RCC_CFGR_MCO2 */ |
|
} |
|
|
|
/** |
|
* @brief Enables the Clock Security System. |
|
* @note If a failure is detected on the HSE oscillator clock, this oscillator |
|
* is automatically disabled and an interrupt is generated to inform the |
|
* software about the failure (Clock Security System Interrupt, CSSI), |
|
* allowing the MCU to perform rescue operations. The CSSI is linked to |
|
* the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector. |
|
* @retval None |
|
*/ |
|
void HAL_RCC_EnableCSS(void) |
|
{ |
|
*(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE; |
|
} |
|
|
|
/** |
|
* @brief Disables the Clock Security System. |
|
* @retval None |
|
*/ |
|
void HAL_RCC_DisableCSS(void) |
|
{ |
|
*(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE; |
|
} |
|
|
|
/** |
|
* @brief Returns the SYSCLK frequency |
|
* |
|
* @note The system frequency computed by this function is not the real |
|
* frequency in the chip. It is calculated based on the predefined |
|
* constant and the selected clock source: |
|
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) |
|
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) |
|
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**) |
|
* or HSI_VALUE(*) multiplied/divided by the PLL factors. |
|
* @note (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value |
|
* 16 MHz) but the real value may vary depending on the variations |
|
* in voltage and temperature. |
|
* @note (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value |
|
* 25 MHz), user has to ensure that HSE_VALUE is same as the real |
|
* frequency of the crystal used. Otherwise, this function may |
|
* have wrong result. |
|
* |
|
* @note The result of this function could be not correct when using fractional |
|
* value for HSE crystal. |
|
* |
|
* @note This function can be used by the user application to compute the |
|
* baudrate for the communication peripherals or configure other parameters. |
|
* |
|
* @note Each time SYSCLK changes, this function must be called to update the |
|
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
|
* |
|
* |
|
* @retval SYSCLK frequency |
|
*/ |
|
__weak uint32_t HAL_RCC_GetSysClockFreq(void) |
|
{ |
|
uint32_t pllm = 0U, pllvco = 0U, pllp = 0U; |
|
uint32_t sysclockfreq = 0U; |
|
|
|
/* Get SYSCLK source -------------------------------------------------------*/ |
|
switch (RCC->CFGR & RCC_CFGR_SWS) |
|
{ |
|
case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */ |
|
{ |
|
sysclockfreq = HSI_VALUE; |
|
break; |
|
} |
|
case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */ |
|
{ |
|
sysclockfreq = HSE_VALUE; |
|
break; |
|
} |
|
case RCC_CFGR_SWS_PLL: /* PLL used as system clock source */ |
|
{ |
|
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN |
|
SYSCLK = PLL_VCO / PLLP */ |
|
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM; |
|
if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI) |
|
{ |
|
/* HSE used as PLL clock source */ |
|
pllvco = (uint32_t) ((((uint64_t) HSE_VALUE * ((uint64_t) ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)))) / (uint64_t)pllm); |
|
} |
|
else |
|
{ |
|
/* HSI used as PLL clock source */ |
|
pllvco = (uint32_t) ((((uint64_t) HSI_VALUE * ((uint64_t) ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)))) / (uint64_t)pllm); |
|
} |
|
pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> RCC_PLLCFGR_PLLP_Pos) + 1U) *2U); |
|
|
|
sysclockfreq = pllvco/pllp; |
|
break; |
|
} |
|
default: |
|
{ |
|
sysclockfreq = HSI_VALUE; |
|
break; |
|
} |
|
} |
|
return sysclockfreq; |
|
} |
|
|
|
/** |
|
* @brief Returns the HCLK frequency |
|
* @note Each time HCLK changes, this function must be called to update the |
|
* right HCLK value. Otherwise, any configuration based on this function will be incorrect. |
|
* |
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
|
* and updated within this function |
|
* @retval HCLK frequency |
|
*/ |
|
uint32_t HAL_RCC_GetHCLKFreq(void) |
|
{ |
|
return SystemCoreClock; |
|
} |
|
|
|
/** |
|
* @brief Returns the PCLK1 frequency |
|
* @note Each time PCLK1 changes, this function must be called to update the |
|
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
|
* @retval PCLK1 frequency |
|
*/ |
|
uint32_t HAL_RCC_GetPCLK1Freq(void) |
|
{ |
|
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
|
return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> RCC_CFGR_PPRE1_Pos]); |
|
} |
|
|
|
/** |
|
* @brief Returns the PCLK2 frequency |
|
* @note Each time PCLK2 changes, this function must be called to update the |
|
* right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. |
|
* @retval PCLK2 frequency |
|
*/ |
|
uint32_t HAL_RCC_GetPCLK2Freq(void) |
|
{ |
|
/* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ |
|
return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> RCC_CFGR_PPRE2_Pos]); |
|
} |
|
|
|
/** |
|
* @brief Configures the RCC_OscInitStruct according to the internal |
|
* RCC configuration registers. |
|
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
|
* will be configured. |
|
* @retval None |
|
*/ |
|
__weak void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
|
{ |
|
/* Set all possible values for the Oscillator type parameter ---------------*/ |
|
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; |
|
|
|
/* Get the HSE configuration -----------------------------------------------*/ |
|
if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP) |
|
{ |
|
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
|
} |
|
else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON) |
|
{ |
|
RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
|
} |
|
|
|
/* Get the HSI configuration -----------------------------------------------*/ |
|
if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION) |
|
{ |
|
RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
|
} |
|
|
|
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos); |
|
|
|
/* Get the LSE configuration -----------------------------------------------*/ |
|
if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) |
|
{ |
|
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
|
} |
|
else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
|
{ |
|
RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
|
} |
|
|
|
/* Get the LSI configuration -----------------------------------------------*/ |
|
if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION) |
|
{ |
|
RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
|
} |
|
|
|
/* Get the PLL configuration -----------------------------------------------*/ |
|
if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON) |
|
{ |
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
|
} |
|
RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); |
|
RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM); |
|
RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos); |
|
RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1U) >> RCC_PLLCFGR_PLLP_Pos); |
|
RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos); |
|
} |
|
|
|
/** |
|
* @brief Configures the RCC_ClkInitStruct according to the internal |
|
* RCC configuration registers. |
|
* @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that |
|
* will be configured. |
|
* @param pFLatency Pointer on the Flash Latency. |
|
* @retval None |
|
*/ |
|
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
|
{ |
|
/* Set all possible values for the Clock type parameter --------------------*/ |
|
RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; |
|
|
|
/* Get the SYSCLK configuration --------------------------------------------*/ |
|
RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); |
|
|
|
/* Get the HCLK configuration ----------------------------------------------*/ |
|
RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); |
|
|
|
/* Get the APB1 configuration ----------------------------------------------*/ |
|
RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1); |
|
|
|
/* Get the APB2 configuration ----------------------------------------------*/ |
|
RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3U); |
|
|
|
/* Get the Flash Wait State (Latency) configuration ------------------------*/ |
|
*pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); |
|
} |
|
|
|
/** |
|
* @brief This function handles the RCC CSS interrupt request. |
|
* @note This API should be called under the NMI_Handler(). |
|
* @retval None |
|
*/ |
|
void HAL_RCC_NMI_IRQHandler(void) |
|
{ |
|
/* Check RCC CSSF flag */ |
|
if(__HAL_RCC_GET_IT(RCC_IT_CSS)) |
|
{ |
|
/* RCC Clock Security System interrupt user callback */ |
|
HAL_RCC_CSSCallback(); |
|
|
|
/* Clear RCC CSS pending bit */ |
|
__HAL_RCC_CLEAR_IT(RCC_IT_CSS); |
|
} |
|
} |
|
|
|
/** |
|
* @brief RCC Clock Security System interrupt callback |
|
* @retval None |
|
*/ |
|
__weak void HAL_RCC_CSSCallback(void) |
|
{ |
|
/* NOTE : This function Should not be modified, when the callback is needed, |
|
the HAL_RCC_CSSCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
#endif /* HAL_RCC_MODULE_ENABLED */ |
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
|