You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
7621 lines
245 KiB
7621 lines
245 KiB
/** |
|
****************************************************************************** |
|
* @file stm32f4xx_hal_tim.c |
|
* @author MCD Application Team |
|
* @brief TIM HAL module driver. |
|
* This file provides firmware functions to manage the following |
|
* functionalities of the Timer (TIM) peripheral: |
|
* + TIM Time Base Initialization |
|
* + TIM Time Base Start |
|
* + TIM Time Base Start Interruption |
|
* + TIM Time Base Start DMA |
|
* + TIM Output Compare/PWM Initialization |
|
* + TIM Output Compare/PWM Channel Configuration |
|
* + TIM Output Compare/PWM Start |
|
* + TIM Output Compare/PWM Start Interruption |
|
* + TIM Output Compare/PWM Start DMA |
|
* + TIM Input Capture Initialization |
|
* + TIM Input Capture Channel Configuration |
|
* + TIM Input Capture Start |
|
* + TIM Input Capture Start Interruption |
|
* + TIM Input Capture Start DMA |
|
* + TIM One Pulse Initialization |
|
* + TIM One Pulse Channel Configuration |
|
* + TIM One Pulse Start |
|
* + TIM Encoder Interface Initialization |
|
* + TIM Encoder Interface Start |
|
* + TIM Encoder Interface Start Interruption |
|
* + TIM Encoder Interface Start DMA |
|
* + Commutation Event configuration with Interruption and DMA |
|
* + TIM OCRef clear configuration |
|
* + TIM External Clock configuration |
|
****************************************************************************** |
|
* @attention |
|
* |
|
* Copyright (c) 2016 STMicroelectronics. |
|
* All rights reserved. |
|
* |
|
* This software is licensed under terms that can be found in the LICENSE file |
|
* in the root directory of this software component. |
|
* If no LICENSE file comes with this software, it is provided AS-IS. |
|
* |
|
****************************************************************************** |
|
@verbatim |
|
============================================================================== |
|
##### TIMER Generic features ##### |
|
============================================================================== |
|
[..] The Timer features include: |
|
(#) 16-bit up, down, up/down auto-reload counter. |
|
(#) 16-bit programmable prescaler allowing dividing (also on the fly) the |
|
counter clock frequency either by any factor between 1 and 65536. |
|
(#) Up to 4 independent channels for: |
|
(++) Input Capture |
|
(++) Output Compare |
|
(++) PWM generation (Edge and Center-aligned Mode) |
|
(++) One-pulse mode output |
|
(#) Synchronization circuit to control the timer with external signals and to interconnect |
|
several timers together. |
|
(#) Supports incremental encoder for positioning purposes |
|
|
|
##### How to use this driver ##### |
|
============================================================================== |
|
[..] |
|
(#) Initialize the TIM low level resources by implementing the following functions |
|
depending on the selected feature: |
|
(++) Time Base : HAL_TIM_Base_MspInit() |
|
(++) Input Capture : HAL_TIM_IC_MspInit() |
|
(++) Output Compare : HAL_TIM_OC_MspInit() |
|
(++) PWM generation : HAL_TIM_PWM_MspInit() |
|
(++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() |
|
(++) Encoder mode output : HAL_TIM_Encoder_MspInit() |
|
|
|
(#) Initialize the TIM low level resources : |
|
(##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); |
|
(##) TIM pins configuration |
|
(+++) Enable the clock for the TIM GPIOs using the following function: |
|
__HAL_RCC_GPIOx_CLK_ENABLE(); |
|
(+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); |
|
|
|
(#) The external Clock can be configured, if needed (the default clock is the |
|
internal clock from the APBx), using the following function: |
|
HAL_TIM_ConfigClockSource, the clock configuration should be done before |
|
any start function. |
|
|
|
(#) Configure the TIM in the desired functioning mode using one of the |
|
Initialization function of this driver: |
|
(++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base |
|
(++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an |
|
Output Compare signal. |
|
(++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a |
|
PWM signal. |
|
(++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an |
|
external signal. |
|
(++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer |
|
in One Pulse Mode. |
|
(++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. |
|
|
|
(#) Activate the TIM peripheral using one of the start functions depending from the feature used: |
|
(++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() |
|
(++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() |
|
(++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() |
|
(++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() |
|
(++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() |
|
(++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). |
|
|
|
(#) The DMA Burst is managed with the two following functions: |
|
HAL_TIM_DMABurst_WriteStart() |
|
HAL_TIM_DMABurst_ReadStart() |
|
|
|
*** Callback registration *** |
|
============================================= |
|
|
|
[..] |
|
The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 |
|
allows the user to configure dynamically the driver callbacks. |
|
|
|
[..] |
|
Use Function HAL_TIM_RegisterCallback() to register a callback. |
|
HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, |
|
the Callback ID and a pointer to the user callback function. |
|
|
|
[..] |
|
Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default |
|
weak function. |
|
HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, |
|
and the Callback ID. |
|
|
|
[..] |
|
These functions allow to register/unregister following callbacks: |
|
(+) Base_MspInitCallback : TIM Base Msp Init Callback. |
|
(+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. |
|
(+) IC_MspInitCallback : TIM IC Msp Init Callback. |
|
(+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. |
|
(+) OC_MspInitCallback : TIM OC Msp Init Callback. |
|
(+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. |
|
(+) PWM_MspInitCallback : TIM PWM Msp Init Callback. |
|
(+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. |
|
(+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. |
|
(+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. |
|
(+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. |
|
(+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. |
|
(+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback. |
|
(+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback. |
|
(+) PeriodElapsedCallback : TIM Period Elapsed Callback. |
|
(+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. |
|
(+) TriggerCallback : TIM Trigger Callback. |
|
(+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. |
|
(+) IC_CaptureCallback : TIM Input Capture Callback. |
|
(+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. |
|
(+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. |
|
(+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. |
|
(+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. |
|
(+) ErrorCallback : TIM Error Callback. |
|
(+) CommutationCallback : TIM Commutation Callback. |
|
(+) CommutationHalfCpltCallback : TIM Commutation half complete Callback. |
|
(+) BreakCallback : TIM Break Callback. |
|
|
|
[..] |
|
By default, after the Init and when the state is HAL_TIM_STATE_RESET |
|
all interrupt callbacks are set to the corresponding weak functions: |
|
examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback(). |
|
|
|
[..] |
|
Exception done for MspInit and MspDeInit functions that are reset to the legacy weak |
|
functionalities in the Init / DeInit only when these callbacks are null |
|
(not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit |
|
keep and use the user MspInit / MspDeInit callbacks(registered beforehand) |
|
|
|
[..] |
|
Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. |
|
Exception done MspInit / MspDeInit that can be registered / unregistered |
|
in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, |
|
thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. |
|
In that case first register the MspInit/MspDeInit user callbacks |
|
using HAL_TIM_RegisterCallback() before calling DeInit or Init function. |
|
|
|
[..] |
|
When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or |
|
not defined, the callback registration feature is not available and all callbacks |
|
are set to the corresponding weak functions. |
|
|
|
@endverbatim |
|
****************************************************************************** |
|
*/ |
|
|
|
/* Includes ------------------------------------------------------------------*/ |
|
#include "stm32f4xx_hal.h" |
|
|
|
/** @addtogroup STM32F4xx_HAL_Driver |
|
* @{ |
|
*/ |
|
|
|
/** @defgroup TIM TIM |
|
* @brief TIM HAL module driver |
|
* @{ |
|
*/ |
|
|
|
#ifdef HAL_TIM_MODULE_ENABLED |
|
|
|
/* Private typedef -----------------------------------------------------------*/ |
|
/* Private define ------------------------------------------------------------*/ |
|
/* Private macros ------------------------------------------------------------*/ |
|
/* Private variables ---------------------------------------------------------*/ |
|
/* Private function prototypes -----------------------------------------------*/ |
|
/** @addtogroup TIM_Private_Functions |
|
* @{ |
|
*/ |
|
static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
|
static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
|
static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
|
static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
|
static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
|
uint32_t TIM_ICFilter); |
|
static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
|
static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
|
uint32_t TIM_ICFilter); |
|
static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
|
uint32_t TIM_ICFilter); |
|
static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); |
|
static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); |
|
static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); |
|
static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); |
|
static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); |
|
static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); |
|
static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
|
TIM_SlaveConfigTypeDef *sSlaveConfig); |
|
/** |
|
* @} |
|
*/ |
|
/* Exported functions --------------------------------------------------------*/ |
|
|
|
/** @defgroup TIM_Exported_Functions TIM Exported Functions |
|
* @{ |
|
*/ |
|
|
|
/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions |
|
* @brief Time Base functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### Time Base functions ##### |
|
============================================================================== |
|
[..] |
|
This section provides functions allowing to: |
|
(+) Initialize and configure the TIM base. |
|
(+) De-initialize the TIM base. |
|
(+) Start the Time Base. |
|
(+) Stop the Time Base. |
|
(+) Start the Time Base and enable interrupt. |
|
(+) Stop the Time Base and disable interrupt. |
|
(+) Start the Time Base and enable DMA transfer. |
|
(+) Stop the Time Base and disable DMA transfer. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
/** |
|
* @brief Initializes the TIM Time base Unit according to the specified |
|
* parameters in the TIM_HandleTypeDef and initialize the associated handle. |
|
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
|
* requires a timer reset to avoid unexpected direction |
|
* due to DIR bit readonly in center aligned mode. |
|
* Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() |
|
* @param htim TIM Base handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the TIM handle allocation */ |
|
if (htim == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
|
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
|
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
|
|
|
if (htim->State == HAL_TIM_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
htim->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
/* Reset interrupt callbacks to legacy weak callbacks */ |
|
TIM_ResetCallback(htim); |
|
|
|
if (htim->Base_MspInitCallback == NULL) |
|
{ |
|
htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
|
} |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC */ |
|
htim->Base_MspInitCallback(htim); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC */ |
|
HAL_TIM_Base_MspInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Set the Time Base configuration */ |
|
TIM_Base_SetConfig(htim->Instance, &htim->Init); |
|
|
|
/* Initialize the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
|
|
/* Initialize the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Initialize the TIM state*/ |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief DeInitializes the TIM Base peripheral |
|
* @param htim TIM Base handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Disable the TIM Peripheral Clock */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
if (htim->Base_MspDeInitCallback == NULL) |
|
{ |
|
htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
|
} |
|
/* DeInit the low level hardware */ |
|
htim->Base_MspDeInitCallback(htim); |
|
#else |
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
|
HAL_TIM_Base_MspDeInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
/* Change the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
|
|
|
/* Change the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
|
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
|
|
|
/* Change TIM state */ |
|
htim->State = HAL_TIM_STATE_RESET; |
|
|
|
/* Release Lock */ |
|
__HAL_UNLOCK(htim); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initializes the TIM Base MSP. |
|
* @param htim TIM Base handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_Base_MspInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief DeInitializes TIM Base MSP. |
|
* @param htim TIM Base handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_Base_MspDeInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
|
|
/** |
|
* @brief Starts the TIM Base generation. |
|
* @param htim TIM Base handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) |
|
{ |
|
uint32_t tmpsmcr; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
|
|
/* Check the TIM state */ |
|
if (htim->State != HAL_TIM_STATE_READY) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Base generation. |
|
* @param htim TIM Base handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Base generation in interrupt mode. |
|
* @param htim TIM Base handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) |
|
{ |
|
uint32_t tmpsmcr; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
|
|
/* Check the TIM state */ |
|
if (htim->State != HAL_TIM_STATE_READY) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Enable the TIM Update interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Base generation in interrupt mode. |
|
* @param htim TIM Base handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
|
|
/* Disable the TIM Update interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Base generation in DMA mode. |
|
* @param htim TIM Base handle |
|
* @param pData The source Buffer address. |
|
* @param Length The length of data to be transferred from memory to peripheral. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) |
|
{ |
|
uint32_t tmpsmcr; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
|
|
|
/* Set the TIM state */ |
|
if (htim->State == HAL_TIM_STATE_BUSY) |
|
{ |
|
return HAL_BUSY; |
|
} |
|
else if (htim->State == HAL_TIM_STATE_READY) |
|
{ |
|
if ((pData == NULL) && (Length > 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
htim->State = HAL_TIM_STATE_BUSY; |
|
} |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the DMA Period elapsed callbacks */ |
|
htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
|
htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Enable the TIM Update DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Base generation in DMA mode. |
|
* @param htim TIM Base handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
|
|
|
/* Disable the TIM Update DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); |
|
|
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions |
|
* @brief TIM Output Compare functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### TIM Output Compare functions ##### |
|
============================================================================== |
|
[..] |
|
This section provides functions allowing to: |
|
(+) Initialize and configure the TIM Output Compare. |
|
(+) De-initialize the TIM Output Compare. |
|
(+) Start the TIM Output Compare. |
|
(+) Stop the TIM Output Compare. |
|
(+) Start the TIM Output Compare and enable interrupt. |
|
(+) Stop the TIM Output Compare and disable interrupt. |
|
(+) Start the TIM Output Compare and enable DMA transfer. |
|
(+) Stop the TIM Output Compare and disable DMA transfer. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
/** |
|
* @brief Initializes the TIM Output Compare according to the specified |
|
* parameters in the TIM_HandleTypeDef and initializes the associated handle. |
|
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
|
* requires a timer reset to avoid unexpected direction |
|
* due to DIR bit readonly in center aligned mode. |
|
* Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() |
|
* @param htim TIM Output Compare handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the TIM handle allocation */ |
|
if (htim == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
|
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
|
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
|
|
|
if (htim->State == HAL_TIM_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
htim->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
/* Reset interrupt callbacks to legacy weak callbacks */ |
|
TIM_ResetCallback(htim); |
|
|
|
if (htim->OC_MspInitCallback == NULL) |
|
{ |
|
htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
|
} |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC */ |
|
htim->OC_MspInitCallback(htim); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
|
HAL_TIM_OC_MspInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Init the base time for the Output Compare */ |
|
TIM_Base_SetConfig(htim->Instance, &htim->Init); |
|
|
|
/* Initialize the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
|
|
/* Initialize the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Initialize the TIM state*/ |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief DeInitializes the TIM peripheral |
|
* @param htim TIM Output Compare handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Disable the TIM Peripheral Clock */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
if (htim->OC_MspDeInitCallback == NULL) |
|
{ |
|
htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
|
} |
|
/* DeInit the low level hardware */ |
|
htim->OC_MspDeInitCallback(htim); |
|
#else |
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
|
HAL_TIM_OC_MspDeInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
/* Change the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
|
|
|
/* Change the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
|
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
|
|
|
/* Change TIM state */ |
|
htim->State = HAL_TIM_STATE_RESET; |
|
|
|
/* Release Lock */ |
|
__HAL_UNLOCK(htim); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initializes the TIM Output Compare MSP. |
|
* @param htim TIM Output Compare handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_OC_MspInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief DeInitializes TIM Output Compare MSP. |
|
* @param htim TIM Output Compare handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_OC_MspDeInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Output Compare signal generation. |
|
* @param htim TIM Output Compare handle |
|
* @param Channel TIM Channel to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
uint32_t tmpsmcr; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Check the TIM channel state */ |
|
if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
|
|
/* Enable the Output compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Enable the main output */ |
|
__HAL_TIM_MOE_ENABLE(htim); |
|
} |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Output Compare signal generation. |
|
* @param htim TIM Output Compare handle |
|
* @param Channel TIM Channel to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Disable the Output compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Disable the Main Output */ |
|
__HAL_TIM_MOE_DISABLE(htim); |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Output Compare signal generation in interrupt mode. |
|
* @param htim TIM Output Compare handle |
|
* @param Channel TIM Channel to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
uint32_t tmpsmcr; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Check the TIM channel state */ |
|
if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Enable the TIM Capture/Compare 1 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Enable the TIM Capture/Compare 2 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Enable the TIM Capture/Compare 3 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Enable the TIM Capture/Compare 4 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Enable the Output compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Enable the main output */ |
|
__HAL_TIM_MOE_ENABLE(htim); |
|
} |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Output Compare signal generation in interrupt mode. |
|
* @param htim TIM Output Compare handle |
|
* @param Channel TIM Channel to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Disable the TIM Capture/Compare 1 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Disable the TIM Capture/Compare 2 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Disable the TIM Capture/Compare 3 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Disable the TIM Capture/Compare 4 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Disable the Output compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Disable the Main Output */ |
|
__HAL_TIM_MOE_DISABLE(htim); |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Output Compare signal generation in DMA mode. |
|
* @param htim TIM Output Compare handle |
|
* @param Channel TIM Channel to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @param pData The source Buffer address. |
|
* @param Length The length of data to be transferred from memory to TIM peripheral |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
uint32_t tmpsmcr; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Set the TIM channel state */ |
|
if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
|
{ |
|
return HAL_BUSY; |
|
} |
|
else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
|
{ |
|
if ((pData == NULL) && (Length > 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Enable the TIM Capture/Compare 1 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Enable the TIM Capture/Compare 2 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Capture/Compare 3 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Capture/Compare 4 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Enable the Output compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Enable the main output */ |
|
__HAL_TIM_MOE_ENABLE(htim); |
|
} |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Output Compare signal generation in DMA mode. |
|
* @param htim TIM Output Compare handle |
|
* @param Channel TIM Channel to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Disable the TIM Capture/Compare 1 DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Disable the TIM Capture/Compare 2 DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Disable the TIM Capture/Compare 3 DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Disable the TIM Capture/Compare 4 interrupt */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Disable the Output compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Disable the Main Output */ |
|
__HAL_TIM_MOE_DISABLE(htim); |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions |
|
* @brief TIM PWM functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### TIM PWM functions ##### |
|
============================================================================== |
|
[..] |
|
This section provides functions allowing to: |
|
(+) Initialize and configure the TIM PWM. |
|
(+) De-initialize the TIM PWM. |
|
(+) Start the TIM PWM. |
|
(+) Stop the TIM PWM. |
|
(+) Start the TIM PWM and enable interrupt. |
|
(+) Stop the TIM PWM and disable interrupt. |
|
(+) Start the TIM PWM and enable DMA transfer. |
|
(+) Stop the TIM PWM and disable DMA transfer. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
/** |
|
* @brief Initializes the TIM PWM Time Base according to the specified |
|
* parameters in the TIM_HandleTypeDef and initializes the associated handle. |
|
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
|
* requires a timer reset to avoid unexpected direction |
|
* due to DIR bit readonly in center aligned mode. |
|
* Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() |
|
* @param htim TIM PWM handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the TIM handle allocation */ |
|
if (htim == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
|
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
|
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
|
|
|
if (htim->State == HAL_TIM_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
htim->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
/* Reset interrupt callbacks to legacy weak callbacks */ |
|
TIM_ResetCallback(htim); |
|
|
|
if (htim->PWM_MspInitCallback == NULL) |
|
{ |
|
htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
|
} |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC */ |
|
htim->PWM_MspInitCallback(htim); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
|
HAL_TIM_PWM_MspInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Init the base time for the PWM */ |
|
TIM_Base_SetConfig(htim->Instance, &htim->Init); |
|
|
|
/* Initialize the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
|
|
/* Initialize the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Initialize the TIM state*/ |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief DeInitializes the TIM peripheral |
|
* @param htim TIM PWM handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Disable the TIM Peripheral Clock */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
if (htim->PWM_MspDeInitCallback == NULL) |
|
{ |
|
htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
|
} |
|
/* DeInit the low level hardware */ |
|
htim->PWM_MspDeInitCallback(htim); |
|
#else |
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
|
HAL_TIM_PWM_MspDeInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
/* Change the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
|
|
|
/* Change the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
|
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
|
|
|
/* Change TIM state */ |
|
htim->State = HAL_TIM_STATE_RESET; |
|
|
|
/* Release Lock */ |
|
__HAL_UNLOCK(htim); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initializes the TIM PWM MSP. |
|
* @param htim TIM PWM handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_PWM_MspInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief DeInitializes TIM PWM MSP. |
|
* @param htim TIM PWM handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_PWM_MspDeInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Starts the PWM signal generation. |
|
* @param htim TIM handle |
|
* @param Channel TIM Channels to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
uint32_t tmpsmcr; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Check the TIM channel state */ |
|
if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
|
|
/* Enable the Capture compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Enable the main output */ |
|
__HAL_TIM_MOE_ENABLE(htim); |
|
} |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the PWM signal generation. |
|
* @param htim TIM PWM handle |
|
* @param Channel TIM Channels to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Disable the Capture compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Disable the Main Output */ |
|
__HAL_TIM_MOE_DISABLE(htim); |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Starts the PWM signal generation in interrupt mode. |
|
* @param htim TIM PWM handle |
|
* @param Channel TIM Channel to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
uint32_t tmpsmcr; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Check the TIM channel state */ |
|
if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Enable the TIM Capture/Compare 1 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Enable the TIM Capture/Compare 2 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Enable the TIM Capture/Compare 3 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Enable the TIM Capture/Compare 4 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Enable the Capture compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Enable the main output */ |
|
__HAL_TIM_MOE_ENABLE(htim); |
|
} |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Stops the PWM signal generation in interrupt mode. |
|
* @param htim TIM PWM handle |
|
* @param Channel TIM Channels to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Disable the TIM Capture/Compare 1 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Disable the TIM Capture/Compare 2 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Disable the TIM Capture/Compare 3 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Disable the TIM Capture/Compare 4 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Disable the Capture compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Disable the Main Output */ |
|
__HAL_TIM_MOE_DISABLE(htim); |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM PWM signal generation in DMA mode. |
|
* @param htim TIM PWM handle |
|
* @param Channel TIM Channels to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @param pData The source Buffer address. |
|
* @param Length The length of data to be transferred from memory to TIM peripheral |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
uint32_t tmpsmcr; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Set the TIM channel state */ |
|
if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
|
{ |
|
return HAL_BUSY; |
|
} |
|
else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
|
{ |
|
if ((pData == NULL) && (Length > 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Enable the TIM Capture/Compare 1 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Capture/Compare 2 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Output Capture/Compare 3 request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Capture/Compare 4 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Enable the Capture compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Enable the main output */ |
|
__HAL_TIM_MOE_ENABLE(htim); |
|
} |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM PWM signal generation in DMA mode. |
|
* @param htim TIM PWM handle |
|
* @param Channel TIM Channels to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Disable the TIM Capture/Compare 1 DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Disable the TIM Capture/Compare 2 DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Disable the TIM Capture/Compare 3 DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Disable the TIM Capture/Compare 4 interrupt */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Disable the Capture compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Disable the Main Output */ |
|
__HAL_TIM_MOE_DISABLE(htim); |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions |
|
* @brief TIM Input Capture functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### TIM Input Capture functions ##### |
|
============================================================================== |
|
[..] |
|
This section provides functions allowing to: |
|
(+) Initialize and configure the TIM Input Capture. |
|
(+) De-initialize the TIM Input Capture. |
|
(+) Start the TIM Input Capture. |
|
(+) Stop the TIM Input Capture. |
|
(+) Start the TIM Input Capture and enable interrupt. |
|
(+) Stop the TIM Input Capture and disable interrupt. |
|
(+) Start the TIM Input Capture and enable DMA transfer. |
|
(+) Stop the TIM Input Capture and disable DMA transfer. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
/** |
|
* @brief Initializes the TIM Input Capture Time base according to the specified |
|
* parameters in the TIM_HandleTypeDef and initializes the associated handle. |
|
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
|
* requires a timer reset to avoid unexpected direction |
|
* due to DIR bit readonly in center aligned mode. |
|
* Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() |
|
* @param htim TIM Input Capture handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the TIM handle allocation */ |
|
if (htim == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
|
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
|
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
|
|
|
if (htim->State == HAL_TIM_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
htim->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
/* Reset interrupt callbacks to legacy weak callbacks */ |
|
TIM_ResetCallback(htim); |
|
|
|
if (htim->IC_MspInitCallback == NULL) |
|
{ |
|
htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
|
} |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC */ |
|
htim->IC_MspInitCallback(htim); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
|
HAL_TIM_IC_MspInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Init the base time for the input capture */ |
|
TIM_Base_SetConfig(htim->Instance, &htim->Init); |
|
|
|
/* Initialize the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
|
|
/* Initialize the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Initialize the TIM state*/ |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief DeInitializes the TIM peripheral |
|
* @param htim TIM Input Capture handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Disable the TIM Peripheral Clock */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
if (htim->IC_MspDeInitCallback == NULL) |
|
{ |
|
htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
|
} |
|
/* DeInit the low level hardware */ |
|
htim->IC_MspDeInitCallback(htim); |
|
#else |
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
|
HAL_TIM_IC_MspDeInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
/* Change the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
|
|
|
/* Change the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
|
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
|
|
|
/* Change TIM state */ |
|
htim->State = HAL_TIM_STATE_RESET; |
|
|
|
/* Release Lock */ |
|
__HAL_UNLOCK(htim); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initializes the TIM Input Capture MSP. |
|
* @param htim TIM Input Capture handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_IC_MspInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief DeInitializes TIM Input Capture MSP. |
|
* @param htim TIM handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_IC_MspDeInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Input Capture measurement. |
|
* @param htim TIM Input Capture handle |
|
* @param Channel TIM Channels to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
uint32_t tmpsmcr; |
|
HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Check the TIM channel state */ |
|
if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
|
|
/* Enable the Input Capture channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Input Capture measurement. |
|
* @param htim TIM Input Capture handle |
|
* @param Channel TIM Channels to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Disable the Input Capture channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Input Capture measurement in interrupt mode. |
|
* @param htim TIM Input Capture handle |
|
* @param Channel TIM Channels to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
uint32_t tmpsmcr; |
|
|
|
HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
/* Check the TIM channel state */ |
|
if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Enable the TIM Capture/Compare 1 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Enable the TIM Capture/Compare 2 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Enable the TIM Capture/Compare 3 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Enable the TIM Capture/Compare 4 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Enable the Input Capture channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Input Capture measurement in interrupt mode. |
|
* @param htim TIM Input Capture handle |
|
* @param Channel TIM Channels to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Disable the TIM Capture/Compare 1 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Disable the TIM Capture/Compare 2 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Disable the TIM Capture/Compare 3 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Disable the TIM Capture/Compare 4 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Disable the Input Capture channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Input Capture measurement in DMA mode. |
|
* @param htim TIM Input Capture handle |
|
* @param Channel TIM Channels to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @param pData The destination Buffer address. |
|
* @param Length The length of data to be transferred from TIM peripheral to memory. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
uint32_t tmpsmcr; |
|
|
|
HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
|
|
|
/* Set the TIM channel state */ |
|
if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY) |
|
|| (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
|
{ |
|
return HAL_BUSY; |
|
} |
|
else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY) |
|
&& (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
if ((pData == NULL) && (Length > 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Enable the Input Capture channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Capture/Compare 1 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Capture/Compare 2 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Capture/Compare 3 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Capture/Compare 4 DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
|
{ |
|
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
|
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
} |
|
else |
|
{ |
|
__HAL_TIM_ENABLE(htim); |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Input Capture measurement in DMA mode. |
|
* @param htim TIM Input Capture handle |
|
* @param Channel TIM Channels to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
|
|
|
/* Disable the Input Capture channel */ |
|
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Disable the TIM Capture/Compare 1 DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Disable the TIM Capture/Compare 2 DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Disable the TIM Capture/Compare 3 DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Disable the TIM Capture/Compare 4 DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions |
|
* @brief TIM One Pulse functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### TIM One Pulse functions ##### |
|
============================================================================== |
|
[..] |
|
This section provides functions allowing to: |
|
(+) Initialize and configure the TIM One Pulse. |
|
(+) De-initialize the TIM One Pulse. |
|
(+) Start the TIM One Pulse. |
|
(+) Stop the TIM One Pulse. |
|
(+) Start the TIM One Pulse and enable interrupt. |
|
(+) Stop the TIM One Pulse and disable interrupt. |
|
(+) Start the TIM One Pulse and enable DMA transfer. |
|
(+) Stop the TIM One Pulse and disable DMA transfer. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
/** |
|
* @brief Initializes the TIM One Pulse Time Base according to the specified |
|
* parameters in the TIM_HandleTypeDef and initializes the associated handle. |
|
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
|
* requires a timer reset to avoid unexpected direction |
|
* due to DIR bit readonly in center aligned mode. |
|
* Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() |
|
* @note When the timer instance is initialized in One Pulse mode, timer |
|
* channels 1 and channel 2 are reserved and cannot be used for other |
|
* purpose. |
|
* @param htim TIM One Pulse handle |
|
* @param OnePulseMode Select the One pulse mode. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. |
|
* @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) |
|
{ |
|
/* Check the TIM handle allocation */ |
|
if (htim == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
|
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
|
assert_param(IS_TIM_OPM_MODE(OnePulseMode)); |
|
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
|
|
|
if (htim->State == HAL_TIM_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
htim->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
/* Reset interrupt callbacks to legacy weak callbacks */ |
|
TIM_ResetCallback(htim); |
|
|
|
if (htim->OnePulse_MspInitCallback == NULL) |
|
{ |
|
htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
|
} |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC */ |
|
htim->OnePulse_MspInitCallback(htim); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
|
HAL_TIM_OnePulse_MspInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Configure the Time base in the One Pulse Mode */ |
|
TIM_Base_SetConfig(htim->Instance, &htim->Init); |
|
|
|
/* Reset the OPM Bit */ |
|
htim->Instance->CR1 &= ~TIM_CR1_OPM; |
|
|
|
/* Configure the OPM Mode */ |
|
htim->Instance->CR1 |= OnePulseMode; |
|
|
|
/* Initialize the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
|
|
/* Initialize the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Initialize the TIM state*/ |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief DeInitializes the TIM One Pulse |
|
* @param htim TIM One Pulse handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Disable the TIM Peripheral Clock */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
if (htim->OnePulse_MspDeInitCallback == NULL) |
|
{ |
|
htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
|
} |
|
/* DeInit the low level hardware */ |
|
htim->OnePulse_MspDeInitCallback(htim); |
|
#else |
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
|
HAL_TIM_OnePulse_MspDeInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
/* Change the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
|
|
|
/* Set the TIM channel state */ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
|
|
|
/* Change TIM state */ |
|
htim->State = HAL_TIM_STATE_RESET; |
|
|
|
/* Release Lock */ |
|
__HAL_UNLOCK(htim); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initializes the TIM One Pulse MSP. |
|
* @param htim TIM One Pulse handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_OnePulse_MspInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief DeInitializes TIM One Pulse MSP. |
|
* @param htim TIM One Pulse handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM One Pulse signal generation. |
|
* @note Though OutputChannel parameter is deprecated and ignored by the function |
|
* it has been kept to avoid HAL_TIM API compatibility break. |
|
* @note The pulse output channel is determined when calling |
|
* @ref HAL_TIM_OnePulse_ConfigChannel(). |
|
* @param htim TIM One Pulse handle |
|
* @param OutputChannel See note above |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
|
{ |
|
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
|
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
|
|
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(OutputChannel); |
|
|
|
/* Check the TIM channels state */ |
|
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
|
|
/* Enable the Capture compare and the Input Capture channels |
|
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
|
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
|
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
|
whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
|
|
|
No need to enable the counter, it's enabled automatically by hardware |
|
(the counter starts in response to a stimulus and generate a pulse */ |
|
|
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Enable the main output */ |
|
__HAL_TIM_MOE_ENABLE(htim); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM One Pulse signal generation. |
|
* @note Though OutputChannel parameter is deprecated and ignored by the function |
|
* it has been kept to avoid HAL_TIM API compatibility break. |
|
* @note The pulse output channel is determined when calling |
|
* @ref HAL_TIM_OnePulse_ConfigChannel(). |
|
* @param htim TIM One Pulse handle |
|
* @param OutputChannel See note above |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(OutputChannel); |
|
|
|
/* Disable the Capture compare and the Input Capture channels |
|
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
|
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
|
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
|
whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
|
|
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Disable the Main Output */ |
|
__HAL_TIM_MOE_DISABLE(htim); |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM One Pulse signal generation in interrupt mode. |
|
* @note Though OutputChannel parameter is deprecated and ignored by the function |
|
* it has been kept to avoid HAL_TIM API compatibility break. |
|
* @note The pulse output channel is determined when calling |
|
* @ref HAL_TIM_OnePulse_ConfigChannel(). |
|
* @param htim TIM One Pulse handle |
|
* @param OutputChannel See note above |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
|
{ |
|
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
|
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
|
|
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(OutputChannel); |
|
|
|
/* Check the TIM channels state */ |
|
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
|
|
/* Enable the Capture compare and the Input Capture channels |
|
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
|
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
|
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
|
whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
|
|
|
No need to enable the counter, it's enabled automatically by hardware |
|
(the counter starts in response to a stimulus and generate a pulse */ |
|
|
|
/* Enable the TIM Capture/Compare 1 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
|
|
/* Enable the TIM Capture/Compare 2 interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
|
|
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Enable the main output */ |
|
__HAL_TIM_MOE_ENABLE(htim); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM One Pulse signal generation in interrupt mode. |
|
* @note Though OutputChannel parameter is deprecated and ignored by the function |
|
* it has been kept to avoid HAL_TIM API compatibility break. |
|
* @note The pulse output channel is determined when calling |
|
* @ref HAL_TIM_OnePulse_ConfigChannel(). |
|
* @param htim TIM One Pulse handle |
|
* @param OutputChannel See note above |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(OutputChannel); |
|
|
|
/* Disable the TIM Capture/Compare 1 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
|
|
|
/* Disable the TIM Capture/Compare 2 interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
|
|
|
/* Disable the Capture compare and the Input Capture channels |
|
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
|
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
|
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
|
whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
|
{ |
|
/* Disable the Main Output */ |
|
__HAL_TIM_MOE_DISABLE(htim); |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions |
|
* @brief TIM Encoder functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### TIM Encoder functions ##### |
|
============================================================================== |
|
[..] |
|
This section provides functions allowing to: |
|
(+) Initialize and configure the TIM Encoder. |
|
(+) De-initialize the TIM Encoder. |
|
(+) Start the TIM Encoder. |
|
(+) Stop the TIM Encoder. |
|
(+) Start the TIM Encoder and enable interrupt. |
|
(+) Stop the TIM Encoder and disable interrupt. |
|
(+) Start the TIM Encoder and enable DMA transfer. |
|
(+) Stop the TIM Encoder and disable DMA transfer. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
/** |
|
* @brief Initializes the TIM Encoder Interface and initialize the associated handle. |
|
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
|
* requires a timer reset to avoid unexpected direction |
|
* due to DIR bit readonly in center aligned mode. |
|
* Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() |
|
* @note Encoder mode and External clock mode 2 are not compatible and must not be selected together |
|
* Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource |
|
* using TIM_CLOCKSOURCE_ETRMODE2 and vice versa |
|
* @note When the timer instance is initialized in Encoder mode, timer |
|
* channels 1 and channel 2 are reserved and cannot be used for other |
|
* purpose. |
|
* @param htim TIM Encoder Interface handle |
|
* @param sConfig TIM Encoder Interface configuration structure |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig) |
|
{ |
|
uint32_t tmpsmcr; |
|
uint32_t tmpccmr1; |
|
uint32_t tmpccer; |
|
|
|
/* Check the TIM handle allocation */ |
|
if (htim == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
|
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
|
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
|
assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); |
|
assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); |
|
assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); |
|
assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); |
|
assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); |
|
assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); |
|
assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); |
|
assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); |
|
assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); |
|
|
|
if (htim->State == HAL_TIM_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
htim->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
/* Reset interrupt callbacks to legacy weak callbacks */ |
|
TIM_ResetCallback(htim); |
|
|
|
if (htim->Encoder_MspInitCallback == NULL) |
|
{ |
|
htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
|
} |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC */ |
|
htim->Encoder_MspInitCallback(htim); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
|
HAL_TIM_Encoder_MspInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/* Set the TIM state */ |
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Reset the SMS and ECE bits */ |
|
htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); |
|
|
|
/* Configure the Time base in the Encoder Mode */ |
|
TIM_Base_SetConfig(htim->Instance, &htim->Init); |
|
|
|
/* Get the TIMx SMCR register value */ |
|
tmpsmcr = htim->Instance->SMCR; |
|
|
|
/* Get the TIMx CCMR1 register value */ |
|
tmpccmr1 = htim->Instance->CCMR1; |
|
|
|
/* Get the TIMx CCER register value */ |
|
tmpccer = htim->Instance->CCER; |
|
|
|
/* Set the encoder Mode */ |
|
tmpsmcr |= sConfig->EncoderMode; |
|
|
|
/* Select the Capture Compare 1 and the Capture Compare 2 as input */ |
|
tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); |
|
tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); |
|
|
|
/* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ |
|
tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); |
|
tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); |
|
tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); |
|
tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); |
|
|
|
/* Set the TI1 and the TI2 Polarities */ |
|
tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); |
|
tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); |
|
tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); |
|
|
|
/* Write to TIMx SMCR */ |
|
htim->Instance->SMCR = tmpsmcr; |
|
|
|
/* Write to TIMx CCMR1 */ |
|
htim->Instance->CCMR1 = tmpccmr1; |
|
|
|
/* Write to TIMx CCER */ |
|
htim->Instance->CCER = tmpccer; |
|
|
|
/* Initialize the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
|
|
/* Set the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
|
|
/* Initialize the TIM state*/ |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
|
|
|
|
/** |
|
* @brief DeInitializes the TIM Encoder interface |
|
* @param htim TIM Encoder Interface handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Disable the TIM Peripheral Clock */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
if (htim->Encoder_MspDeInitCallback == NULL) |
|
{ |
|
htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
|
} |
|
/* DeInit the low level hardware */ |
|
htim->Encoder_MspDeInitCallback(htim); |
|
#else |
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
|
HAL_TIM_Encoder_MspDeInit(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
/* Change the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
|
|
|
/* Set the TIM channels state */ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
|
|
|
/* Change TIM state */ |
|
htim->State = HAL_TIM_STATE_RESET; |
|
|
|
/* Release Lock */ |
|
__HAL_UNLOCK(htim); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initializes the TIM Encoder Interface MSP. |
|
* @param htim TIM Encoder Interface handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_Encoder_MspInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief DeInitializes TIM Encoder Interface MSP. |
|
* @param htim TIM Encoder Interface handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_Encoder_MspDeInit could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Encoder Interface. |
|
* @param htim TIM Encoder Interface handle |
|
* @param Channel TIM Channels to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
|
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
|
|
|
/* Set the TIM channel(s) state */ |
|
if (Channel == TIM_CHANNEL_1) |
|
{ |
|
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
else if (Channel == TIM_CHANNEL_2) |
|
{ |
|
if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
else |
|
{ |
|
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
|
|
/* Enable the encoder interface channels */ |
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
|
break; |
|
} |
|
|
|
default : |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
|
break; |
|
} |
|
} |
|
/* Enable the Peripheral */ |
|
__HAL_TIM_ENABLE(htim); |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Encoder Interface. |
|
* @param htim TIM Encoder Interface handle |
|
* @param Channel TIM Channels to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
|
|
|
/* Disable the Input Capture channels 1 and 2 |
|
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
|
break; |
|
} |
|
|
|
default : |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
|
break; |
|
} |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel(s) state */ |
|
if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Encoder Interface in interrupt mode. |
|
* @param htim TIM Encoder Interface handle |
|
* @param Channel TIM Channels to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
|
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
|
|
|
/* Set the TIM channel(s) state */ |
|
if (Channel == TIM_CHANNEL_1) |
|
{ |
|
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
else if (Channel == TIM_CHANNEL_2) |
|
{ |
|
if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
else |
|
{ |
|
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
|
|
/* Enable the encoder interface channels */ |
|
/* Enable the capture compare Interrupts 1 and/or 2 */ |
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
|
break; |
|
} |
|
|
|
default : |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
|
break; |
|
} |
|
} |
|
|
|
/* Enable the Peripheral */ |
|
__HAL_TIM_ENABLE(htim); |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Encoder Interface in interrupt mode. |
|
* @param htim TIM Encoder Interface handle |
|
* @param Channel TIM Channels to be disabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
|
|
|
/* Disable the Input Capture channels 1 and 2 |
|
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
|
if (Channel == TIM_CHANNEL_1) |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
|
|
/* Disable the capture compare Interrupts 1 */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
|
} |
|
else if (Channel == TIM_CHANNEL_2) |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
|
|
|
/* Disable the capture compare Interrupts 2 */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
|
} |
|
else |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
|
|
|
/* Disable the capture compare Interrupts 1 and 2 */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel(s) state */ |
|
if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Starts the TIM Encoder Interface in DMA mode. |
|
* @param htim TIM Encoder Interface handle |
|
* @param Channel TIM Channels to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
|
* @param pData1 The destination Buffer address for IC1. |
|
* @param pData2 The destination Buffer address for IC2. |
|
* @param Length The length of data to be transferred from TIM peripheral to memory. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, |
|
uint32_t *pData2, uint16_t Length) |
|
{ |
|
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
|
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
|
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
|
|
|
/* Set the TIM channel(s) state */ |
|
if (Channel == TIM_CHANNEL_1) |
|
{ |
|
if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
|
|| (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
|
{ |
|
return HAL_BUSY; |
|
} |
|
else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
|
&& (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
if ((pData1 == NULL) && (Length > 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
else if (Channel == TIM_CHANNEL_2) |
|
{ |
|
if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) |
|
|| (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
|
{ |
|
return HAL_BUSY; |
|
} |
|
else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY) |
|
&& (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
if ((pData2 == NULL) && (Length > 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
else |
|
{ |
|
if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
|
|| (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) |
|
|| (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
|
|| (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
|
{ |
|
return HAL_BUSY; |
|
} |
|
else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
|
&& (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) |
|
&& (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
|
&& (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) |
|
{ |
|
if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
} |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Input Capture DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
|
|
|
/* Enable the Capture compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
|
|
/* Enable the Peripheral */ |
|
__HAL_TIM_ENABLE(htim); |
|
|
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; |
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
/* Enable the TIM Input Capture DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
|
|
|
/* Enable the Capture compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
|
|
|
/* Enable the Peripheral */ |
|
__HAL_TIM_ENABLE(htim); |
|
|
|
break; |
|
} |
|
|
|
default: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
|
Length) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Enable the TIM Input Capture DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
|
/* Enable the TIM Input Capture DMA request */ |
|
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
|
|
|
/* Enable the Capture compare channel */ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
|
|
|
/* Enable the Peripheral */ |
|
__HAL_TIM_ENABLE(htim); |
|
|
|
break; |
|
} |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM Encoder Interface in DMA mode. |
|
* @param htim TIM Encoder Interface handle |
|
* @param Channel TIM Channels to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
|
|
|
/* Disable the Input Capture channels 1 and 2 |
|
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
|
if (Channel == TIM_CHANNEL_1) |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
|
|
/* Disable the capture compare DMA Request 1 */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
|
} |
|
else if (Channel == TIM_CHANNEL_2) |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
|
|
|
/* Disable the capture compare DMA Request 2 */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
|
} |
|
else |
|
{ |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
|
|
|
/* Disable the capture compare DMA Request 1 and 2 */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
|
} |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_TIM_DISABLE(htim); |
|
|
|
/* Set the TIM channel(s) state */ |
|
if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
else |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management |
|
* @brief TIM IRQ handler management |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### IRQ handler management ##### |
|
============================================================================== |
|
[..] |
|
This section provides Timer IRQ handler function. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
/** |
|
* @brief This function handles TIM interrupts requests. |
|
* @param htim TIM handle |
|
* @retval None |
|
*/ |
|
void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Capture compare 1 event */ |
|
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) |
|
{ |
|
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET) |
|
{ |
|
{ |
|
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
|
|
|
/* Input capture event */ |
|
if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) |
|
{ |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->IC_CaptureCallback(htim); |
|
#else |
|
HAL_TIM_IC_CaptureCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
/* Output compare event */ |
|
else |
|
{ |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->OC_DelayElapsedCallback(htim); |
|
htim->PWM_PulseFinishedCallback(htim); |
|
#else |
|
HAL_TIM_OC_DelayElapsedCallback(htim); |
|
HAL_TIM_PWM_PulseFinishedCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
} |
|
} |
|
} |
|
/* Capture compare 2 event */ |
|
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) |
|
{ |
|
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET) |
|
{ |
|
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
|
/* Input capture event */ |
|
if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) |
|
{ |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->IC_CaptureCallback(htim); |
|
#else |
|
HAL_TIM_IC_CaptureCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
/* Output compare event */ |
|
else |
|
{ |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->OC_DelayElapsedCallback(htim); |
|
htim->PWM_PulseFinishedCallback(htim); |
|
#else |
|
HAL_TIM_OC_DelayElapsedCallback(htim); |
|
HAL_TIM_PWM_PulseFinishedCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
} |
|
} |
|
/* Capture compare 3 event */ |
|
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) |
|
{ |
|
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET) |
|
{ |
|
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
|
/* Input capture event */ |
|
if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) |
|
{ |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->IC_CaptureCallback(htim); |
|
#else |
|
HAL_TIM_IC_CaptureCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
/* Output compare event */ |
|
else |
|
{ |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->OC_DelayElapsedCallback(htim); |
|
htim->PWM_PulseFinishedCallback(htim); |
|
#else |
|
HAL_TIM_OC_DelayElapsedCallback(htim); |
|
HAL_TIM_PWM_PulseFinishedCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
} |
|
} |
|
/* Capture compare 4 event */ |
|
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) |
|
{ |
|
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET) |
|
{ |
|
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
|
/* Input capture event */ |
|
if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) |
|
{ |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->IC_CaptureCallback(htim); |
|
#else |
|
HAL_TIM_IC_CaptureCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
/* Output compare event */ |
|
else |
|
{ |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->OC_DelayElapsedCallback(htim); |
|
htim->PWM_PulseFinishedCallback(htim); |
|
#else |
|
HAL_TIM_OC_DelayElapsedCallback(htim); |
|
HAL_TIM_PWM_PulseFinishedCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
} |
|
} |
|
/* TIM Update event */ |
|
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) |
|
{ |
|
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) |
|
{ |
|
__HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->PeriodElapsedCallback(htim); |
|
#else |
|
HAL_TIM_PeriodElapsedCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
/* TIM Break input event */ |
|
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET) |
|
{ |
|
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET) |
|
{ |
|
__HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK); |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->BreakCallback(htim); |
|
#else |
|
HAL_TIMEx_BreakCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
/* TIM Trigger detection event */ |
|
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) |
|
{ |
|
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) |
|
{ |
|
__HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->TriggerCallback(htim); |
|
#else |
|
HAL_TIM_TriggerCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
/* TIM commutation event */ |
|
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET) |
|
{ |
|
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET) |
|
{ |
|
__HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM); |
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->CommutationCallback(htim); |
|
#else |
|
HAL_TIMEx_CommutCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions |
|
* @brief TIM Peripheral Control functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### Peripheral Control functions ##### |
|
============================================================================== |
|
[..] |
|
This section provides functions allowing to: |
|
(+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. |
|
(+) Configure External Clock source. |
|
(+) Configure Complementary channels, break features and dead time. |
|
(+) Configure Master and the Slave synchronization. |
|
(+) Configure the DMA Burst Mode. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Initializes the TIM Output Compare Channels according to the specified |
|
* parameters in the TIM_OC_InitTypeDef. |
|
* @param htim TIM Output Compare handle |
|
* @param sConfig TIM Output Compare configuration structure |
|
* @param Channel TIM Channels to configure |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, |
|
TIM_OC_InitTypeDef *sConfig, |
|
uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CHANNELS(Channel)); |
|
assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); |
|
assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(htim); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
|
|
|
/* Configure the TIM Channel 1 in Output Compare */ |
|
TIM_OC1_SetConfig(htim->Instance, sConfig); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
|
|
|
/* Configure the TIM Channel 2 in Output Compare */ |
|
TIM_OC2_SetConfig(htim->Instance, sConfig); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
|
|
|
/* Configure the TIM Channel 3 in Output Compare */ |
|
TIM_OC3_SetConfig(htim->Instance, sConfig); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
|
|
|
/* Configure the TIM Channel 4 in Output Compare */ |
|
TIM_OC4_SetConfig(htim->Instance, sConfig); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
__HAL_UNLOCK(htim); |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Initializes the TIM Input Capture Channels according to the specified |
|
* parameters in the TIM_IC_InitTypeDef. |
|
* @param htim TIM IC handle |
|
* @param sConfig TIM Input Capture configuration structure |
|
* @param Channel TIM Channel to configure |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef *sConfig, uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); |
|
assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); |
|
assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); |
|
assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(htim); |
|
|
|
if (Channel == TIM_CHANNEL_1) |
|
{ |
|
/* TI1 Configuration */ |
|
TIM_TI1_SetConfig(htim->Instance, |
|
sConfig->ICPolarity, |
|
sConfig->ICSelection, |
|
sConfig->ICFilter); |
|
|
|
/* Reset the IC1PSC Bits */ |
|
htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
|
|
|
/* Set the IC1PSC value */ |
|
htim->Instance->CCMR1 |= sConfig->ICPrescaler; |
|
} |
|
else if (Channel == TIM_CHANNEL_2) |
|
{ |
|
/* TI2 Configuration */ |
|
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
|
|
|
TIM_TI2_SetConfig(htim->Instance, |
|
sConfig->ICPolarity, |
|
sConfig->ICSelection, |
|
sConfig->ICFilter); |
|
|
|
/* Reset the IC2PSC Bits */ |
|
htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
|
|
|
/* Set the IC2PSC value */ |
|
htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); |
|
} |
|
else if (Channel == TIM_CHANNEL_3) |
|
{ |
|
/* TI3 Configuration */ |
|
assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
|
|
|
TIM_TI3_SetConfig(htim->Instance, |
|
sConfig->ICPolarity, |
|
sConfig->ICSelection, |
|
sConfig->ICFilter); |
|
|
|
/* Reset the IC3PSC Bits */ |
|
htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; |
|
|
|
/* Set the IC3PSC value */ |
|
htim->Instance->CCMR2 |= sConfig->ICPrescaler; |
|
} |
|
else if (Channel == TIM_CHANNEL_4) |
|
{ |
|
/* TI4 Configuration */ |
|
assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
|
|
|
TIM_TI4_SetConfig(htim->Instance, |
|
sConfig->ICPolarity, |
|
sConfig->ICSelection, |
|
sConfig->ICFilter); |
|
|
|
/* Reset the IC4PSC Bits */ |
|
htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; |
|
|
|
/* Set the IC4PSC value */ |
|
htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); |
|
} |
|
else |
|
{ |
|
status = HAL_ERROR; |
|
} |
|
|
|
__HAL_UNLOCK(htim); |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Initializes the TIM PWM channels according to the specified |
|
* parameters in the TIM_OC_InitTypeDef. |
|
* @param htim TIM PWM handle |
|
* @param sConfig TIM PWM configuration structure |
|
* @param Channel TIM Channels to be configured |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, |
|
TIM_OC_InitTypeDef *sConfig, |
|
uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CHANNELS(Channel)); |
|
assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); |
|
assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
|
assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(htim); |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
|
|
|
/* Configure the Channel 1 in PWM mode */ |
|
TIM_OC1_SetConfig(htim->Instance, sConfig); |
|
|
|
/* Set the Preload enable bit for channel1 */ |
|
htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; |
|
|
|
/* Configure the Output Fast mode */ |
|
htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; |
|
htim->Instance->CCMR1 |= sConfig->OCFastMode; |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
|
|
|
/* Configure the Channel 2 in PWM mode */ |
|
TIM_OC2_SetConfig(htim->Instance, sConfig); |
|
|
|
/* Set the Preload enable bit for channel2 */ |
|
htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; |
|
|
|
/* Configure the Output Fast mode */ |
|
htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; |
|
htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
|
|
|
/* Configure the Channel 3 in PWM mode */ |
|
TIM_OC3_SetConfig(htim->Instance, sConfig); |
|
|
|
/* Set the Preload enable bit for channel3 */ |
|
htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; |
|
|
|
/* Configure the Output Fast mode */ |
|
htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; |
|
htim->Instance->CCMR2 |= sConfig->OCFastMode; |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
|
|
|
/* Configure the Channel 4 in PWM mode */ |
|
TIM_OC4_SetConfig(htim->Instance, sConfig); |
|
|
|
/* Set the Preload enable bit for channel4 */ |
|
htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; |
|
|
|
/* Configure the Output Fast mode */ |
|
htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; |
|
htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
__HAL_UNLOCK(htim); |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Initializes the TIM One Pulse Channels according to the specified |
|
* parameters in the TIM_OnePulse_InitTypeDef. |
|
* @param htim TIM One Pulse handle |
|
* @param sConfig TIM One Pulse configuration structure |
|
* @param OutputChannel TIM output channel to configure |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @param InputChannel TIM input Channel to configure |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @note To output a waveform with a minimum delay user can enable the fast |
|
* mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx |
|
* output is forced in response to the edge detection on TIx input, |
|
* without taking in account the comparison. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, |
|
uint32_t OutputChannel, uint32_t InputChannel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
TIM_OC_InitTypeDef temp1; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); |
|
assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); |
|
|
|
if (OutputChannel != InputChannel) |
|
{ |
|
/* Process Locked */ |
|
__HAL_LOCK(htim); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Extract the Output compare configuration from sConfig structure */ |
|
temp1.OCMode = sConfig->OCMode; |
|
temp1.Pulse = sConfig->Pulse; |
|
temp1.OCPolarity = sConfig->OCPolarity; |
|
temp1.OCNPolarity = sConfig->OCNPolarity; |
|
temp1.OCIdleState = sConfig->OCIdleState; |
|
temp1.OCNIdleState = sConfig->OCNIdleState; |
|
|
|
switch (OutputChannel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
|
|
|
TIM_OC1_SetConfig(htim->Instance, &temp1); |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
|
|
|
TIM_OC2_SetConfig(htim->Instance, &temp1); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
switch (InputChannel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
|
|
|
TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, |
|
sConfig->ICSelection, sConfig->ICFilter); |
|
|
|
/* Reset the IC1PSC Bits */ |
|
htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
|
|
|
/* Select the Trigger source */ |
|
htim->Instance->SMCR &= ~TIM_SMCR_TS; |
|
htim->Instance->SMCR |= TIM_TS_TI1FP1; |
|
|
|
/* Select the Slave Mode */ |
|
htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
|
htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_2: |
|
{ |
|
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
|
|
|
TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, |
|
sConfig->ICSelection, sConfig->ICFilter); |
|
|
|
/* Reset the IC2PSC Bits */ |
|
htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
|
|
|
/* Select the Trigger source */ |
|
htim->Instance->SMCR &= ~TIM_SMCR_TS; |
|
htim->Instance->SMCR |= TIM_TS_TI2FP2; |
|
|
|
/* Select the Slave Mode */ |
|
htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
|
htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
} |
|
|
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
__HAL_UNLOCK(htim); |
|
|
|
return status; |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral |
|
* @param htim TIM handle |
|
* @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
|
* This parameter can be one of the following values: |
|
* @arg TIM_DMABASE_CR1 |
|
* @arg TIM_DMABASE_CR2 |
|
* @arg TIM_DMABASE_SMCR |
|
* @arg TIM_DMABASE_DIER |
|
* @arg TIM_DMABASE_SR |
|
* @arg TIM_DMABASE_EGR |
|
* @arg TIM_DMABASE_CCMR1 |
|
* @arg TIM_DMABASE_CCMR2 |
|
* @arg TIM_DMABASE_CCER |
|
* @arg TIM_DMABASE_CNT |
|
* @arg TIM_DMABASE_PSC |
|
* @arg TIM_DMABASE_ARR |
|
* @arg TIM_DMABASE_RCR |
|
* @arg TIM_DMABASE_CCR1 |
|
* @arg TIM_DMABASE_CCR2 |
|
* @arg TIM_DMABASE_CCR3 |
|
* @arg TIM_DMABASE_CCR4 |
|
* @arg TIM_DMABASE_BDTR |
|
* @param BurstRequestSrc TIM DMA Request sources |
|
* This parameter can be one of the following values: |
|
* @arg TIM_DMA_UPDATE: TIM update Interrupt source |
|
* @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
|
* @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
|
* @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
|
* @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
|
* @arg TIM_DMA_COM: TIM Commutation DMA source |
|
* @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
|
* @param BurstBuffer The Buffer address. |
|
* @param BurstLength DMA Burst length. This parameter can be one value |
|
* between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
|
* @note This function should be used only when BurstLength is equal to DMA data transfer length. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
|
uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
|
{ |
|
HAL_StatusTypeDef status; |
|
|
|
status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
|
((BurstLength) >> 8U) + 1U); |
|
|
|
|
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral |
|
* @param htim TIM handle |
|
* @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
|
* This parameter can be one of the following values: |
|
* @arg TIM_DMABASE_CR1 |
|
* @arg TIM_DMABASE_CR2 |
|
* @arg TIM_DMABASE_SMCR |
|
* @arg TIM_DMABASE_DIER |
|
* @arg TIM_DMABASE_SR |
|
* @arg TIM_DMABASE_EGR |
|
* @arg TIM_DMABASE_CCMR1 |
|
* @arg TIM_DMABASE_CCMR2 |
|
* @arg TIM_DMABASE_CCER |
|
* @arg TIM_DMABASE_CNT |
|
* @arg TIM_DMABASE_PSC |
|
* @arg TIM_DMABASE_ARR |
|
* @arg TIM_DMABASE_RCR |
|
* @arg TIM_DMABASE_CCR1 |
|
* @arg TIM_DMABASE_CCR2 |
|
* @arg TIM_DMABASE_CCR3 |
|
* @arg TIM_DMABASE_CCR4 |
|
* @arg TIM_DMABASE_BDTR |
|
* @param BurstRequestSrc TIM DMA Request sources |
|
* This parameter can be one of the following values: |
|
* @arg TIM_DMA_UPDATE: TIM update Interrupt source |
|
* @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
|
* @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
|
* @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
|
* @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
|
* @arg TIM_DMA_COM: TIM Commutation DMA source |
|
* @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
|
* @param BurstBuffer The Buffer address. |
|
* @param BurstLength DMA Burst length. This parameter can be one value |
|
* between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
|
* @param DataLength Data length. This parameter can be one value |
|
* between 1 and 0xFFFF. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
|
uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
|
uint32_t BurstLength, uint32_t DataLength) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
|
assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
|
assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
|
assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
|
|
|
if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
|
{ |
|
return HAL_BUSY; |
|
} |
|
else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
|
{ |
|
if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
|
} |
|
} |
|
else |
|
{ |
|
/* nothing to do */ |
|
} |
|
|
|
switch (BurstRequestSrc) |
|
{ |
|
case TIM_DMA_UPDATE: |
|
{ |
|
/* Set the DMA Period elapsed callbacks */ |
|
htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
|
htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, |
|
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_CC1: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, |
|
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_CC2: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, |
|
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_CC3: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, |
|
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_CC4: |
|
{ |
|
/* Set the DMA compare callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
|
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, |
|
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_COM: |
|
{ |
|
/* Set the DMA commutation callbacks */ |
|
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; |
|
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, |
|
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_TRIGGER: |
|
{ |
|
/* Set the DMA trigger callbacks */ |
|
htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
|
htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, |
|
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Configure the DMA Burst Mode */ |
|
htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
|
/* Enable the TIM DMA Request */ |
|
__HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Stops the TIM DMA Burst mode |
|
* @param htim TIM handle |
|
* @param BurstRequestSrc TIM DMA Request sources to disable |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
|
|
|
/* Abort the DMA transfer (at least disable the DMA stream) */ |
|
switch (BurstRequestSrc) |
|
{ |
|
case TIM_DMA_UPDATE: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
|
break; |
|
} |
|
case TIM_DMA_CC1: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
|
break; |
|
} |
|
case TIM_DMA_CC2: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
|
break; |
|
} |
|
case TIM_DMA_CC3: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
|
break; |
|
} |
|
case TIM_DMA_CC4: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
|
break; |
|
} |
|
case TIM_DMA_COM: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); |
|
break; |
|
} |
|
case TIM_DMA_TRIGGER: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
|
break; |
|
} |
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Disable the TIM Update DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
|
|
|
/* Change the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
|
* @param htim TIM handle |
|
* @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
|
* This parameter can be one of the following values: |
|
* @arg TIM_DMABASE_CR1 |
|
* @arg TIM_DMABASE_CR2 |
|
* @arg TIM_DMABASE_SMCR |
|
* @arg TIM_DMABASE_DIER |
|
* @arg TIM_DMABASE_SR |
|
* @arg TIM_DMABASE_EGR |
|
* @arg TIM_DMABASE_CCMR1 |
|
* @arg TIM_DMABASE_CCMR2 |
|
* @arg TIM_DMABASE_CCER |
|
* @arg TIM_DMABASE_CNT |
|
* @arg TIM_DMABASE_PSC |
|
* @arg TIM_DMABASE_ARR |
|
* @arg TIM_DMABASE_RCR |
|
* @arg TIM_DMABASE_CCR1 |
|
* @arg TIM_DMABASE_CCR2 |
|
* @arg TIM_DMABASE_CCR3 |
|
* @arg TIM_DMABASE_CCR4 |
|
* @arg TIM_DMABASE_BDTR |
|
* @param BurstRequestSrc TIM DMA Request sources |
|
* This parameter can be one of the following values: |
|
* @arg TIM_DMA_UPDATE: TIM update Interrupt source |
|
* @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
|
* @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
|
* @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
|
* @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
|
* @arg TIM_DMA_COM: TIM Commutation DMA source |
|
* @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
|
* @param BurstBuffer The Buffer address. |
|
* @param BurstLength DMA Burst length. This parameter can be one value |
|
* between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
|
* @note This function should be used only when BurstLength is equal to DMA data transfer length. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
|
uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
|
{ |
|
HAL_StatusTypeDef status; |
|
|
|
status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
|
((BurstLength) >> 8U) + 1U); |
|
|
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
|
* @param htim TIM handle |
|
* @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
|
* This parameter can be one of the following values: |
|
* @arg TIM_DMABASE_CR1 |
|
* @arg TIM_DMABASE_CR2 |
|
* @arg TIM_DMABASE_SMCR |
|
* @arg TIM_DMABASE_DIER |
|
* @arg TIM_DMABASE_SR |
|
* @arg TIM_DMABASE_EGR |
|
* @arg TIM_DMABASE_CCMR1 |
|
* @arg TIM_DMABASE_CCMR2 |
|
* @arg TIM_DMABASE_CCER |
|
* @arg TIM_DMABASE_CNT |
|
* @arg TIM_DMABASE_PSC |
|
* @arg TIM_DMABASE_ARR |
|
* @arg TIM_DMABASE_RCR |
|
* @arg TIM_DMABASE_CCR1 |
|
* @arg TIM_DMABASE_CCR2 |
|
* @arg TIM_DMABASE_CCR3 |
|
* @arg TIM_DMABASE_CCR4 |
|
* @arg TIM_DMABASE_BDTR |
|
* @param BurstRequestSrc TIM DMA Request sources |
|
* This parameter can be one of the following values: |
|
* @arg TIM_DMA_UPDATE: TIM update Interrupt source |
|
* @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
|
* @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
|
* @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
|
* @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
|
* @arg TIM_DMA_COM: TIM Commutation DMA source |
|
* @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
|
* @param BurstBuffer The Buffer address. |
|
* @param BurstLength DMA Burst length. This parameter can be one value |
|
* between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
|
* @param DataLength Data length. This parameter can be one value |
|
* between 1 and 0xFFFF. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
|
uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
|
uint32_t BurstLength, uint32_t DataLength) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
|
assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
|
assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
|
assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
|
|
|
if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
|
{ |
|
return HAL_BUSY; |
|
} |
|
else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
|
{ |
|
if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
|
} |
|
} |
|
else |
|
{ |
|
/* nothing to do */ |
|
} |
|
switch (BurstRequestSrc) |
|
{ |
|
case TIM_DMA_UPDATE: |
|
{ |
|
/* Set the DMA Period elapsed callbacks */ |
|
htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
|
htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
|
DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_CC1: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
|
DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_CC2: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
|
DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_CC3: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
|
DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_CC4: |
|
{ |
|
/* Set the DMA capture callbacks */ |
|
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
|
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
|
DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_COM: |
|
{ |
|
/* Set the DMA commutation callbacks */ |
|
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; |
|
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
|
DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
case TIM_DMA_TRIGGER: |
|
{ |
|
/* Set the DMA trigger callbacks */ |
|
htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
|
htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
|
|
|
/* Enable the DMA stream */ |
|
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
|
DataLength) != HAL_OK) |
|
{ |
|
/* Return error status */ |
|
return HAL_ERROR; |
|
} |
|
break; |
|
} |
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Configure the DMA Burst Mode */ |
|
htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
|
|
|
/* Enable the TIM DMA Request */ |
|
__HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Stop the DMA burst reading |
|
* @param htim TIM handle |
|
* @param BurstRequestSrc TIM DMA Request sources to disable. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
|
|
|
/* Abort the DMA transfer (at least disable the DMA stream) */ |
|
switch (BurstRequestSrc) |
|
{ |
|
case TIM_DMA_UPDATE: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
|
break; |
|
} |
|
case TIM_DMA_CC1: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
|
break; |
|
} |
|
case TIM_DMA_CC2: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
|
break; |
|
} |
|
case TIM_DMA_CC3: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
|
break; |
|
} |
|
case TIM_DMA_CC4: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
|
break; |
|
} |
|
case TIM_DMA_COM: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); |
|
break; |
|
} |
|
case TIM_DMA_TRIGGER: |
|
{ |
|
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
|
break; |
|
} |
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
/* Disable the TIM Update DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
|
|
|
/* Change the DMA burst operation state */ |
|
htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
} |
|
|
|
/* Return function status */ |
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Generate a software event |
|
* @param htim TIM handle |
|
* @param EventSource specifies the event source. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source |
|
* @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source |
|
* @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source |
|
* @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source |
|
* @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source |
|
* @arg TIM_EVENTSOURCE_COM: Timer COM event source |
|
* @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source |
|
* @arg TIM_EVENTSOURCE_BREAK: Timer Break event source |
|
* @note Basic timers can only generate an update event. |
|
* @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances. |
|
* @note TIM_EVENTSOURCE_BREAK are relevant only for timer instances |
|
* supporting a break input. |
|
* @retval HAL status |
|
*/ |
|
|
|
HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_EVENT_SOURCE(EventSource)); |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(htim); |
|
|
|
/* Change the TIM state */ |
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Set the event sources */ |
|
htim->Instance->EGR = EventSource; |
|
|
|
/* Change the TIM state */ |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
__HAL_UNLOCK(htim); |
|
|
|
/* Return function status */ |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Configures the OCRef clear feature |
|
* @param htim TIM handle |
|
* @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that |
|
* contains the OCREF clear feature and parameters for the TIM peripheral. |
|
* @param Channel specifies the TIM Channel |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, |
|
TIM_ClearInputConfigTypeDef *sClearInputConfig, |
|
uint32_t Channel) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(htim); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
switch (sClearInputConfig->ClearInputSource) |
|
{ |
|
case TIM_CLEARINPUTSOURCE_NONE: |
|
{ |
|
/* Clear the OCREF clear selection bit and the the ETR Bits */ |
|
CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); |
|
break; |
|
} |
|
|
|
case TIM_CLEARINPUTSOURCE_ETR: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); |
|
assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); |
|
assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); |
|
|
|
/* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ |
|
if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) |
|
{ |
|
htim->State = HAL_TIM_STATE_READY; |
|
__HAL_UNLOCK(htim); |
|
return HAL_ERROR; |
|
} |
|
|
|
TIM_ETR_SetConfig(htim->Instance, |
|
sClearInputConfig->ClearInputPrescaler, |
|
sClearInputConfig->ClearInputPolarity, |
|
sClearInputConfig->ClearInputFilter); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (status == HAL_OK) |
|
{ |
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
|
{ |
|
/* Enable the OCREF clear feature for Channel 1 */ |
|
SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
|
} |
|
else |
|
{ |
|
/* Disable the OCREF clear feature for Channel 1 */ |
|
CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
|
} |
|
break; |
|
} |
|
case TIM_CHANNEL_2: |
|
{ |
|
if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
|
{ |
|
/* Enable the OCREF clear feature for Channel 2 */ |
|
SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
|
} |
|
else |
|
{ |
|
/* Disable the OCREF clear feature for Channel 2 */ |
|
CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
|
} |
|
break; |
|
} |
|
case TIM_CHANNEL_3: |
|
{ |
|
if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
|
{ |
|
/* Enable the OCREF clear feature for Channel 3 */ |
|
SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
|
} |
|
else |
|
{ |
|
/* Disable the OCREF clear feature for Channel 3 */ |
|
CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
|
} |
|
break; |
|
} |
|
case TIM_CHANNEL_4: |
|
{ |
|
if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
|
{ |
|
/* Enable the OCREF clear feature for Channel 4 */ |
|
SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
|
} |
|
else |
|
{ |
|
/* Disable the OCREF clear feature for Channel 4 */ |
|
CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
|
} |
|
break; |
|
} |
|
default: |
|
break; |
|
} |
|
} |
|
|
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
__HAL_UNLOCK(htim); |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Configures the clock source to be used |
|
* @param htim TIM handle |
|
* @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that |
|
* contains the clock source information for the TIM peripheral. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
uint32_t tmpsmcr; |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(htim); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); |
|
|
|
/* Reset the SMS, TS, ECE, ETPS and ETRF bits */ |
|
tmpsmcr = htim->Instance->SMCR; |
|
tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); |
|
tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
|
htim->Instance->SMCR = tmpsmcr; |
|
|
|
switch (sClockSourceConfig->ClockSource) |
|
{ |
|
case TIM_CLOCKSOURCE_INTERNAL: |
|
{ |
|
assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
break; |
|
} |
|
|
|
case TIM_CLOCKSOURCE_ETRMODE1: |
|
{ |
|
/* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ |
|
assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
|
|
|
/* Check ETR input conditioning related parameters */ |
|
assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
|
assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
|
assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
|
|
|
/* Configure the ETR Clock source */ |
|
TIM_ETR_SetConfig(htim->Instance, |
|
sClockSourceConfig->ClockPrescaler, |
|
sClockSourceConfig->ClockPolarity, |
|
sClockSourceConfig->ClockFilter); |
|
|
|
/* Select the External clock mode1 and the ETRF trigger */ |
|
tmpsmcr = htim->Instance->SMCR; |
|
tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); |
|
/* Write to TIMx SMCR */ |
|
htim->Instance->SMCR = tmpsmcr; |
|
break; |
|
} |
|
|
|
case TIM_CLOCKSOURCE_ETRMODE2: |
|
{ |
|
/* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ |
|
assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); |
|
|
|
/* Check ETR input conditioning related parameters */ |
|
assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
|
assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
|
assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
|
|
|
/* Configure the ETR Clock source */ |
|
TIM_ETR_SetConfig(htim->Instance, |
|
sClockSourceConfig->ClockPrescaler, |
|
sClockSourceConfig->ClockPolarity, |
|
sClockSourceConfig->ClockFilter); |
|
/* Enable the External clock mode2 */ |
|
htim->Instance->SMCR |= TIM_SMCR_ECE; |
|
break; |
|
} |
|
|
|
case TIM_CLOCKSOURCE_TI1: |
|
{ |
|
/* Check whether or not the timer instance supports external clock mode 1 */ |
|
assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
|
|
|
/* Check TI1 input conditioning related parameters */ |
|
assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
|
assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
|
|
|
TIM_TI1_ConfigInputStage(htim->Instance, |
|
sClockSourceConfig->ClockPolarity, |
|
sClockSourceConfig->ClockFilter); |
|
TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); |
|
break; |
|
} |
|
|
|
case TIM_CLOCKSOURCE_TI2: |
|
{ |
|
/* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ |
|
assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
|
|
|
/* Check TI2 input conditioning related parameters */ |
|
assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
|
assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
|
|
|
TIM_TI2_ConfigInputStage(htim->Instance, |
|
sClockSourceConfig->ClockPolarity, |
|
sClockSourceConfig->ClockFilter); |
|
TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); |
|
break; |
|
} |
|
|
|
case TIM_CLOCKSOURCE_TI1ED: |
|
{ |
|
/* Check whether or not the timer instance supports external clock mode 1 */ |
|
assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
|
|
|
/* Check TI1 input conditioning related parameters */ |
|
assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
|
assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
|
|
|
TIM_TI1_ConfigInputStage(htim->Instance, |
|
sClockSourceConfig->ClockPolarity, |
|
sClockSourceConfig->ClockFilter); |
|
TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); |
|
break; |
|
} |
|
|
|
case TIM_CLOCKSOURCE_ITR0: |
|
case TIM_CLOCKSOURCE_ITR1: |
|
case TIM_CLOCKSOURCE_ITR2: |
|
case TIM_CLOCKSOURCE_ITR3: |
|
{ |
|
/* Check whether or not the timer instance supports internal trigger input */ |
|
assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); |
|
|
|
TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
__HAL_UNLOCK(htim); |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Selects the signal connected to the TI1 input: direct from CH1_input |
|
* or a XOR combination between CH1_input, CH2_input & CH3_input |
|
* @param htim TIM handle. |
|
* @param TI1_Selection Indicate whether or not channel 1 is connected to the |
|
* output of a XOR gate. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input |
|
* @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 |
|
* pins are connected to the TI1 input (XOR combination) |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) |
|
{ |
|
uint32_t tmpcr2; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); |
|
|
|
/* Get the TIMx CR2 register value */ |
|
tmpcr2 = htim->Instance->CR2; |
|
|
|
/* Reset the TI1 selection */ |
|
tmpcr2 &= ~TIM_CR2_TI1S; |
|
|
|
/* Set the TI1 selection */ |
|
tmpcr2 |= TI1_Selection; |
|
|
|
/* Write to TIMxCR2 */ |
|
htim->Instance->CR2 = tmpcr2; |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Configures the TIM in Slave mode |
|
* @param htim TIM handle. |
|
* @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
|
* contains the selected trigger (internal trigger input, filtered |
|
* timer input or external trigger input) and the Slave mode |
|
* (Disable, Reset, Gated, Trigger, External clock mode 1). |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
|
assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
|
|
|
__HAL_LOCK(htim); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
|
{ |
|
htim->State = HAL_TIM_STATE_READY; |
|
__HAL_UNLOCK(htim); |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Disable Trigger Interrupt */ |
|
__HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); |
|
|
|
/* Disable Trigger DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
|
|
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
__HAL_UNLOCK(htim); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Configures the TIM in Slave mode in interrupt mode |
|
* @param htim TIM handle. |
|
* @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
|
* contains the selected trigger (internal trigger input, filtered |
|
* timer input or external trigger input) and the Slave mode |
|
* (Disable, Reset, Gated, Trigger, External clock mode 1). |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, |
|
TIM_SlaveConfigTypeDef *sSlaveConfig) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
|
assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
|
|
|
__HAL_LOCK(htim); |
|
|
|
htim->State = HAL_TIM_STATE_BUSY; |
|
|
|
if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
|
{ |
|
htim->State = HAL_TIM_STATE_READY; |
|
__HAL_UNLOCK(htim); |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Enable Trigger Interrupt */ |
|
__HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); |
|
|
|
/* Disable Trigger DMA request */ |
|
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
|
|
|
htim->State = HAL_TIM_STATE_READY; |
|
|
|
__HAL_UNLOCK(htim); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Read the captured value from Capture Compare unit |
|
* @param htim TIM handle. |
|
* @param Channel TIM Channels to be enabled |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
* @retval Captured value |
|
*/ |
|
uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
uint32_t tmpreg = 0U; |
|
|
|
switch (Channel) |
|
{ |
|
case TIM_CHANNEL_1: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
|
|
|
/* Return the capture 1 value */ |
|
tmpreg = htim->Instance->CCR1; |
|
|
|
break; |
|
} |
|
case TIM_CHANNEL_2: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
|
|
|
/* Return the capture 2 value */ |
|
tmpreg = htim->Instance->CCR2; |
|
|
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_3: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
|
|
|
/* Return the capture 3 value */ |
|
tmpreg = htim->Instance->CCR3; |
|
|
|
break; |
|
} |
|
|
|
case TIM_CHANNEL_4: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
|
|
|
/* Return the capture 4 value */ |
|
tmpreg = htim->Instance->CCR4; |
|
|
|
break; |
|
} |
|
|
|
default: |
|
break; |
|
} |
|
|
|
return tmpreg; |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions |
|
* @brief TIM Callbacks functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### TIM Callbacks functions ##### |
|
============================================================================== |
|
[..] |
|
This section provides TIM callback functions: |
|
(+) TIM Period elapsed callback |
|
(+) TIM Output Compare callback |
|
(+) TIM Input capture callback |
|
(+) TIM Trigger callback |
|
(+) TIM Error callback |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Period elapsed callback in non-blocking mode |
|
* @param htim TIM handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_PeriodElapsedCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Period elapsed half complete callback in non-blocking mode |
|
* @param htim TIM handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Output Compare callback in non-blocking mode |
|
* @param htim TIM OC handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Input Capture callback in non-blocking mode |
|
* @param htim TIM IC handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_IC_CaptureCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Input Capture half complete callback in non-blocking mode |
|
* @param htim TIM IC handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief PWM Pulse finished callback in non-blocking mode |
|
* @param htim TIM handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief PWM Pulse finished half complete callback in non-blocking mode |
|
* @param htim TIM handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Hall Trigger detection callback in non-blocking mode |
|
* @param htim TIM handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_TriggerCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Hall Trigger detection half complete callback in non-blocking mode |
|
* @param htim TIM handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Timer error callback in non-blocking mode |
|
* @param htim TIM handle |
|
* @retval None |
|
*/ |
|
__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(htim); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_TIM_ErrorCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
/** |
|
* @brief Register a User TIM callback to be used instead of the weak predefined callback |
|
* @param htim tim handle |
|
* @param CallbackID ID of the callback to be registered |
|
* This parameter can be one of the following values: |
|
* @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
|
* @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
|
* @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
|
* @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
|
* @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
|
* @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
|
* @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID |
|
* @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
|
* @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
|
* @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
|
* @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
|
* @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
|
* @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
|
* @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
|
* @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
|
* @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
|
* @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
|
* @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID |
|
* @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID |
|
* @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID |
|
* @param pCallback pointer to the callback function |
|
* @retval status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, |
|
pTIM_CallbackTypeDef pCallback) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
if (pCallback == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
/* Process locked */ |
|
__HAL_LOCK(htim); |
|
|
|
if (htim->State == HAL_TIM_STATE_READY) |
|
{ |
|
switch (CallbackID) |
|
{ |
|
case HAL_TIM_BASE_MSPINIT_CB_ID : |
|
htim->Base_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
|
htim->Base_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_IC_MSPINIT_CB_ID : |
|
htim->IC_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_IC_MSPDEINIT_CB_ID : |
|
htim->IC_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_OC_MSPINIT_CB_ID : |
|
htim->OC_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_OC_MSPDEINIT_CB_ID : |
|
htim->OC_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_PWM_MSPINIT_CB_ID : |
|
htim->PWM_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
|
htim->PWM_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
|
htim->OnePulse_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
|
htim->OnePulse_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
|
htim->Encoder_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
|
htim->Encoder_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
|
htim->HallSensor_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
|
htim->HallSensor_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
|
htim->PeriodElapsedCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
|
htim->PeriodElapsedHalfCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_TRIGGER_CB_ID : |
|
htim->TriggerCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_TRIGGER_HALF_CB_ID : |
|
htim->TriggerHalfCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_IC_CAPTURE_CB_ID : |
|
htim->IC_CaptureCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
|
htim->IC_CaptureHalfCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
|
htim->OC_DelayElapsedCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
|
htim->PWM_PulseFinishedCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
|
htim->PWM_PulseFinishedHalfCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_ERROR_CB_ID : |
|
htim->ErrorCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_COMMUTATION_CB_ID : |
|
htim->CommutationCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_COMMUTATION_HALF_CB_ID : |
|
htim->CommutationHalfCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_BREAK_CB_ID : |
|
htim->BreakCallback = pCallback; |
|
break; |
|
|
|
default : |
|
/* Return error status */ |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
} |
|
else if (htim->State == HAL_TIM_STATE_RESET) |
|
{ |
|
switch (CallbackID) |
|
{ |
|
case HAL_TIM_BASE_MSPINIT_CB_ID : |
|
htim->Base_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
|
htim->Base_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_IC_MSPINIT_CB_ID : |
|
htim->IC_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_IC_MSPDEINIT_CB_ID : |
|
htim->IC_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_OC_MSPINIT_CB_ID : |
|
htim->OC_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_OC_MSPDEINIT_CB_ID : |
|
htim->OC_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_PWM_MSPINIT_CB_ID : |
|
htim->PWM_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
|
htim->PWM_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
|
htim->OnePulse_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
|
htim->OnePulse_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
|
htim->Encoder_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
|
htim->Encoder_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
|
htim->HallSensor_MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
|
htim->HallSensor_MspDeInitCallback = pCallback; |
|
break; |
|
|
|
default : |
|
/* Return error status */ |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
} |
|
else |
|
{ |
|
/* Return error status */ |
|
status = HAL_ERROR; |
|
} |
|
|
|
/* Release Lock */ |
|
__HAL_UNLOCK(htim); |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Unregister a TIM callback |
|
* TIM callback is redirected to the weak predefined callback |
|
* @param htim tim handle |
|
* @param CallbackID ID of the callback to be unregistered |
|
* This parameter can be one of the following values: |
|
* @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
|
* @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
|
* @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
|
* @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
|
* @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
|
* @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
|
* @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID |
|
* @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID |
|
* @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
|
* @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
|
* @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
|
* @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
|
* @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
|
* @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
|
* @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
|
* @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
|
* @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
|
* @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
|
* @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID |
|
* @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID |
|
* @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID |
|
* @retval status |
|
*/ |
|
HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Process locked */ |
|
__HAL_LOCK(htim); |
|
|
|
if (htim->State == HAL_TIM_STATE_READY) |
|
{ |
|
switch (CallbackID) |
|
{ |
|
case HAL_TIM_BASE_MSPINIT_CB_ID : |
|
/* Legacy weak Base MspInit Callback */ |
|
htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
|
break; |
|
|
|
case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
|
/* Legacy weak Base Msp DeInit Callback */ |
|
htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_IC_MSPINIT_CB_ID : |
|
/* Legacy weak IC Msp Init Callback */ |
|
htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
|
break; |
|
|
|
case HAL_TIM_IC_MSPDEINIT_CB_ID : |
|
/* Legacy weak IC Msp DeInit Callback */ |
|
htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_OC_MSPINIT_CB_ID : |
|
/* Legacy weak OC Msp Init Callback */ |
|
htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
|
break; |
|
|
|
case HAL_TIM_OC_MSPDEINIT_CB_ID : |
|
/* Legacy weak OC Msp DeInit Callback */ |
|
htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_PWM_MSPINIT_CB_ID : |
|
/* Legacy weak PWM Msp Init Callback */ |
|
htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
|
break; |
|
|
|
case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
|
/* Legacy weak PWM Msp DeInit Callback */ |
|
htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
|
/* Legacy weak One Pulse Msp Init Callback */ |
|
htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
|
break; |
|
|
|
case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
|
/* Legacy weak One Pulse Msp DeInit Callback */ |
|
htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
|
/* Legacy weak Encoder Msp Init Callback */ |
|
htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
|
break; |
|
|
|
case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
|
/* Legacy weak Encoder Msp DeInit Callback */ |
|
htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
|
/* Legacy weak Hall Sensor Msp Init Callback */ |
|
htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; |
|
break; |
|
|
|
case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
|
/* Legacy weak Hall Sensor Msp DeInit Callback */ |
|
htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
|
/* Legacy weak Period Elapsed Callback */ |
|
htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
|
break; |
|
|
|
case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
|
/* Legacy weak Period Elapsed half complete Callback */ |
|
htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
|
break; |
|
|
|
case HAL_TIM_TRIGGER_CB_ID : |
|
/* Legacy weak Trigger Callback */ |
|
htim->TriggerCallback = HAL_TIM_TriggerCallback; |
|
break; |
|
|
|
case HAL_TIM_TRIGGER_HALF_CB_ID : |
|
/* Legacy weak Trigger half complete Callback */ |
|
htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
|
break; |
|
|
|
case HAL_TIM_IC_CAPTURE_CB_ID : |
|
/* Legacy weak IC Capture Callback */ |
|
htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
|
break; |
|
|
|
case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
|
/* Legacy weak IC Capture half complete Callback */ |
|
htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
|
break; |
|
|
|
case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
|
/* Legacy weak OC Delay Elapsed Callback */ |
|
htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
|
break; |
|
|
|
case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
|
/* Legacy weak PWM Pulse Finished Callback */ |
|
htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
|
break; |
|
|
|
case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
|
/* Legacy weak PWM Pulse Finished half complete Callback */ |
|
htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
|
break; |
|
|
|
case HAL_TIM_ERROR_CB_ID : |
|
/* Legacy weak Error Callback */ |
|
htim->ErrorCallback = HAL_TIM_ErrorCallback; |
|
break; |
|
|
|
case HAL_TIM_COMMUTATION_CB_ID : |
|
/* Legacy weak Commutation Callback */ |
|
htim->CommutationCallback = HAL_TIMEx_CommutCallback; |
|
break; |
|
|
|
case HAL_TIM_COMMUTATION_HALF_CB_ID : |
|
/* Legacy weak Commutation half complete Callback */ |
|
htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; |
|
break; |
|
|
|
case HAL_TIM_BREAK_CB_ID : |
|
/* Legacy weak Break Callback */ |
|
htim->BreakCallback = HAL_TIMEx_BreakCallback; |
|
break; |
|
|
|
default : |
|
/* Return error status */ |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
} |
|
else if (htim->State == HAL_TIM_STATE_RESET) |
|
{ |
|
switch (CallbackID) |
|
{ |
|
case HAL_TIM_BASE_MSPINIT_CB_ID : |
|
/* Legacy weak Base MspInit Callback */ |
|
htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
|
break; |
|
|
|
case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
|
/* Legacy weak Base Msp DeInit Callback */ |
|
htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_IC_MSPINIT_CB_ID : |
|
/* Legacy weak IC Msp Init Callback */ |
|
htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
|
break; |
|
|
|
case HAL_TIM_IC_MSPDEINIT_CB_ID : |
|
/* Legacy weak IC Msp DeInit Callback */ |
|
htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_OC_MSPINIT_CB_ID : |
|
/* Legacy weak OC Msp Init Callback */ |
|
htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
|
break; |
|
|
|
case HAL_TIM_OC_MSPDEINIT_CB_ID : |
|
/* Legacy weak OC Msp DeInit Callback */ |
|
htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_PWM_MSPINIT_CB_ID : |
|
/* Legacy weak PWM Msp Init Callback */ |
|
htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
|
break; |
|
|
|
case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
|
/* Legacy weak PWM Msp DeInit Callback */ |
|
htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
|
/* Legacy weak One Pulse Msp Init Callback */ |
|
htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
|
break; |
|
|
|
case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
|
/* Legacy weak One Pulse Msp DeInit Callback */ |
|
htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
|
/* Legacy weak Encoder Msp Init Callback */ |
|
htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
|
break; |
|
|
|
case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
|
/* Legacy weak Encoder Msp DeInit Callback */ |
|
htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
|
break; |
|
|
|
case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
|
/* Legacy weak Hall Sensor Msp Init Callback */ |
|
htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; |
|
break; |
|
|
|
case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
|
/* Legacy weak Hall Sensor Msp DeInit Callback */ |
|
htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; |
|
break; |
|
|
|
default : |
|
/* Return error status */ |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
} |
|
else |
|
{ |
|
/* Return error status */ |
|
status = HAL_ERROR; |
|
} |
|
|
|
/* Release Lock */ |
|
__HAL_UNLOCK(htim); |
|
|
|
return status; |
|
} |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions |
|
* @brief TIM Peripheral State functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### Peripheral State functions ##### |
|
============================================================================== |
|
[..] |
|
This subsection permits to get in run-time the status of the peripheral |
|
and the data flow. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Return the TIM Base handle state. |
|
* @param htim TIM Base handle |
|
* @retval HAL state |
|
*/ |
|
HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) |
|
{ |
|
return htim->State; |
|
} |
|
|
|
/** |
|
* @brief Return the TIM OC handle state. |
|
* @param htim TIM Output Compare handle |
|
* @retval HAL state |
|
*/ |
|
HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) |
|
{ |
|
return htim->State; |
|
} |
|
|
|
/** |
|
* @brief Return the TIM PWM handle state. |
|
* @param htim TIM handle |
|
* @retval HAL state |
|
*/ |
|
HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) |
|
{ |
|
return htim->State; |
|
} |
|
|
|
/** |
|
* @brief Return the TIM Input Capture handle state. |
|
* @param htim TIM IC handle |
|
* @retval HAL state |
|
*/ |
|
HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) |
|
{ |
|
return htim->State; |
|
} |
|
|
|
/** |
|
* @brief Return the TIM One Pulse Mode handle state. |
|
* @param htim TIM OPM handle |
|
* @retval HAL state |
|
*/ |
|
HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) |
|
{ |
|
return htim->State; |
|
} |
|
|
|
/** |
|
* @brief Return the TIM Encoder Mode handle state. |
|
* @param htim TIM Encoder Interface handle |
|
* @retval HAL state |
|
*/ |
|
HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) |
|
{ |
|
return htim->State; |
|
} |
|
|
|
/** |
|
* @brief Return the TIM Encoder Mode handle state. |
|
* @param htim TIM handle |
|
* @retval Active channel |
|
*/ |
|
HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim) |
|
{ |
|
return htim->Channel; |
|
} |
|
|
|
/** |
|
* @brief Return actual state of the TIM channel. |
|
* @param htim TIM handle |
|
* @param Channel TIM Channel |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 |
|
* @arg TIM_CHANNEL_5: TIM Channel 5 |
|
* @arg TIM_CHANNEL_6: TIM Channel 6 |
|
* @retval TIM Channel state |
|
*/ |
|
HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
{ |
|
HAL_TIM_ChannelStateTypeDef channel_state; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
|
|
channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
|
|
|
return channel_state; |
|
} |
|
|
|
/** |
|
* @brief Return actual state of a DMA burst operation. |
|
* @param htim TIM handle |
|
* @retval DMA burst state |
|
*/ |
|
HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
|
|
|
return htim->DMABurstState; |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup TIM_Private_Functions TIM Private Functions |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief TIM DMA error callback |
|
* @param hdma pointer to DMA handle. |
|
* @retval None |
|
*/ |
|
void TIM_DMAError(DMA_HandleTypeDef *hdma) |
|
{ |
|
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
|
|
if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
else |
|
{ |
|
htim->State = HAL_TIM_STATE_READY; |
|
} |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->ErrorCallback(htim); |
|
#else |
|
HAL_TIM_ErrorCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
} |
|
|
|
/** |
|
* @brief TIM DMA Delay Pulse complete callback. |
|
* @param hdma pointer to DMA handle. |
|
* @retval None |
|
*/ |
|
static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
|
|
if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
|
|
|
if (hdma->Init.Mode == DMA_NORMAL) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
|
|
|
if (hdma->Init.Mode == DMA_NORMAL) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
|
|
|
if (hdma->Init.Mode == DMA_NORMAL) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
|
|
|
if (hdma->Init.Mode == DMA_NORMAL) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
} |
|
else |
|
{ |
|
/* nothing to do */ |
|
} |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->PWM_PulseFinishedCallback(htim); |
|
#else |
|
HAL_TIM_PWM_PulseFinishedCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
} |
|
|
|
/** |
|
* @brief TIM DMA Delay Pulse half complete callback. |
|
* @param hdma pointer to DMA handle. |
|
* @retval None |
|
*/ |
|
void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
|
|
if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
|
} |
|
else |
|
{ |
|
/* nothing to do */ |
|
} |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->PWM_PulseFinishedHalfCpltCallback(htim); |
|
#else |
|
HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
} |
|
|
|
/** |
|
* @brief TIM DMA Capture complete callback. |
|
* @param hdma pointer to DMA handle. |
|
* @retval None |
|
*/ |
|
void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
|
|
if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
|
|
|
if (hdma->Init.Mode == DMA_NORMAL) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
|
|
|
if (hdma->Init.Mode == DMA_NORMAL) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
|
|
|
if (hdma->Init.Mode == DMA_NORMAL) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
|
|
|
if (hdma->Init.Mode == DMA_NORMAL) |
|
{ |
|
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
|
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
|
} |
|
} |
|
else |
|
{ |
|
/* nothing to do */ |
|
} |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->IC_CaptureCallback(htim); |
|
#else |
|
HAL_TIM_IC_CaptureCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
} |
|
|
|
/** |
|
* @brief TIM DMA Capture half complete callback. |
|
* @param hdma pointer to DMA handle. |
|
* @retval None |
|
*/ |
|
void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
|
|
if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
|
} |
|
else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
|
{ |
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
|
} |
|
else |
|
{ |
|
/* nothing to do */ |
|
} |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->IC_CaptureHalfCpltCallback(htim); |
|
#else |
|
HAL_TIM_IC_CaptureHalfCpltCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
} |
|
|
|
/** |
|
* @brief TIM DMA Period Elapse complete callback. |
|
* @param hdma pointer to DMA handle. |
|
* @retval None |
|
*/ |
|
static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
|
|
if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) |
|
{ |
|
htim->State = HAL_TIM_STATE_READY; |
|
} |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->PeriodElapsedCallback(htim); |
|
#else |
|
HAL_TIM_PeriodElapsedCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/** |
|
* @brief TIM DMA Period Elapse half complete callback. |
|
* @param hdma pointer to DMA handle. |
|
* @retval None |
|
*/ |
|
static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->PeriodElapsedHalfCpltCallback(htim); |
|
#else |
|
HAL_TIM_PeriodElapsedHalfCpltCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/** |
|
* @brief TIM DMA Trigger callback. |
|
* @param hdma pointer to DMA handle. |
|
* @retval None |
|
*/ |
|
static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
|
|
if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) |
|
{ |
|
htim->State = HAL_TIM_STATE_READY; |
|
} |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->TriggerCallback(htim); |
|
#else |
|
HAL_TIM_TriggerCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/** |
|
* @brief TIM DMA Trigger half complete callback. |
|
* @param hdma pointer to DMA handle. |
|
* @retval None |
|
*/ |
|
static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
htim->TriggerHalfCpltCallback(htim); |
|
#else |
|
HAL_TIM_TriggerHalfCpltCallback(htim); |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/** |
|
* @brief Time Base configuration |
|
* @param TIMx TIM peripheral |
|
* @param Structure TIM Base configuration structure |
|
* @retval None |
|
*/ |
|
void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) |
|
{ |
|
uint32_t tmpcr1; |
|
tmpcr1 = TIMx->CR1; |
|
|
|
/* Set TIM Time Base Unit parameters ---------------------------------------*/ |
|
if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) |
|
{ |
|
/* Select the Counter Mode */ |
|
tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); |
|
tmpcr1 |= Structure->CounterMode; |
|
} |
|
|
|
if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) |
|
{ |
|
/* Set the clock division */ |
|
tmpcr1 &= ~TIM_CR1_CKD; |
|
tmpcr1 |= (uint32_t)Structure->ClockDivision; |
|
} |
|
|
|
/* Set the auto-reload preload */ |
|
MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); |
|
|
|
TIMx->CR1 = tmpcr1; |
|
|
|
/* Set the Autoreload value */ |
|
TIMx->ARR = (uint32_t)Structure->Period ; |
|
|
|
/* Set the Prescaler value */ |
|
TIMx->PSC = Structure->Prescaler; |
|
|
|
if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) |
|
{ |
|
/* Set the Repetition Counter value */ |
|
TIMx->RCR = Structure->RepetitionCounter; |
|
} |
|
|
|
/* Generate an update event to reload the Prescaler |
|
and the repetition counter (only for advanced timer) value immediately */ |
|
TIMx->EGR = TIM_EGR_UG; |
|
} |
|
|
|
/** |
|
* @brief Timer Output Compare 1 configuration |
|
* @param TIMx to select the TIM peripheral |
|
* @param OC_Config The output configuration structure |
|
* @retval None |
|
*/ |
|
static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
|
{ |
|
uint32_t tmpccmrx; |
|
uint32_t tmpccer; |
|
uint32_t tmpcr2; |
|
|
|
/* Disable the Channel 1: Reset the CC1E Bit */ |
|
TIMx->CCER &= ~TIM_CCER_CC1E; |
|
|
|
/* Get the TIMx CCER register value */ |
|
tmpccer = TIMx->CCER; |
|
/* Get the TIMx CR2 register value */ |
|
tmpcr2 = TIMx->CR2; |
|
|
|
/* Get the TIMx CCMR1 register value */ |
|
tmpccmrx = TIMx->CCMR1; |
|
|
|
/* Reset the Output Compare Mode Bits */ |
|
tmpccmrx &= ~TIM_CCMR1_OC1M; |
|
tmpccmrx &= ~TIM_CCMR1_CC1S; |
|
/* Select the Output Compare Mode */ |
|
tmpccmrx |= OC_Config->OCMode; |
|
|
|
/* Reset the Output Polarity level */ |
|
tmpccer &= ~TIM_CCER_CC1P; |
|
/* Set the Output Compare Polarity */ |
|
tmpccer |= OC_Config->OCPolarity; |
|
|
|
if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1)) |
|
{ |
|
/* Check parameters */ |
|
assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); |
|
|
|
/* Reset the Output N Polarity level */ |
|
tmpccer &= ~TIM_CCER_CC1NP; |
|
/* Set the Output N Polarity */ |
|
tmpccer |= OC_Config->OCNPolarity; |
|
/* Reset the Output N State */ |
|
tmpccer &= ~TIM_CCER_CC1NE; |
|
} |
|
|
|
if (IS_TIM_BREAK_INSTANCE(TIMx)) |
|
{ |
|
/* Check parameters */ |
|
assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); |
|
assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
|
|
|
/* Reset the Output Compare and Output Compare N IDLE State */ |
|
tmpcr2 &= ~TIM_CR2_OIS1; |
|
tmpcr2 &= ~TIM_CR2_OIS1N; |
|
/* Set the Output Idle state */ |
|
tmpcr2 |= OC_Config->OCIdleState; |
|
/* Set the Output N Idle state */ |
|
tmpcr2 |= OC_Config->OCNIdleState; |
|
} |
|
|
|
/* Write to TIMx CR2 */ |
|
TIMx->CR2 = tmpcr2; |
|
|
|
/* Write to TIMx CCMR1 */ |
|
TIMx->CCMR1 = tmpccmrx; |
|
|
|
/* Set the Capture Compare Register value */ |
|
TIMx->CCR1 = OC_Config->Pulse; |
|
|
|
/* Write to TIMx CCER */ |
|
TIMx->CCER = tmpccer; |
|
} |
|
|
|
/** |
|
* @brief Timer Output Compare 2 configuration |
|
* @param TIMx to select the TIM peripheral |
|
* @param OC_Config The output configuration structure |
|
* @retval None |
|
*/ |
|
void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
|
{ |
|
uint32_t tmpccmrx; |
|
uint32_t tmpccer; |
|
uint32_t tmpcr2; |
|
|
|
/* Disable the Channel 2: Reset the CC2E Bit */ |
|
TIMx->CCER &= ~TIM_CCER_CC2E; |
|
|
|
/* Get the TIMx CCER register value */ |
|
tmpccer = TIMx->CCER; |
|
/* Get the TIMx CR2 register value */ |
|
tmpcr2 = TIMx->CR2; |
|
|
|
/* Get the TIMx CCMR1 register value */ |
|
tmpccmrx = TIMx->CCMR1; |
|
|
|
/* Reset the Output Compare mode and Capture/Compare selection Bits */ |
|
tmpccmrx &= ~TIM_CCMR1_OC2M; |
|
tmpccmrx &= ~TIM_CCMR1_CC2S; |
|
|
|
/* Select the Output Compare Mode */ |
|
tmpccmrx |= (OC_Config->OCMode << 8U); |
|
|
|
/* Reset the Output Polarity level */ |
|
tmpccer &= ~TIM_CCER_CC2P; |
|
/* Set the Output Compare Polarity */ |
|
tmpccer |= (OC_Config->OCPolarity << 4U); |
|
|
|
if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2)) |
|
{ |
|
assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); |
|
|
|
/* Reset the Output N Polarity level */ |
|
tmpccer &= ~TIM_CCER_CC2NP; |
|
/* Set the Output N Polarity */ |
|
tmpccer |= (OC_Config->OCNPolarity << 4U); |
|
/* Reset the Output N State */ |
|
tmpccer &= ~TIM_CCER_CC2NE; |
|
|
|
} |
|
|
|
if (IS_TIM_BREAK_INSTANCE(TIMx)) |
|
{ |
|
/* Check parameters */ |
|
assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); |
|
assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
|
|
|
/* Reset the Output Compare and Output Compare N IDLE State */ |
|
tmpcr2 &= ~TIM_CR2_OIS2; |
|
tmpcr2 &= ~TIM_CR2_OIS2N; |
|
/* Set the Output Idle state */ |
|
tmpcr2 |= (OC_Config->OCIdleState << 2U); |
|
/* Set the Output N Idle state */ |
|
tmpcr2 |= (OC_Config->OCNIdleState << 2U); |
|
} |
|
|
|
/* Write to TIMx CR2 */ |
|
TIMx->CR2 = tmpcr2; |
|
|
|
/* Write to TIMx CCMR1 */ |
|
TIMx->CCMR1 = tmpccmrx; |
|
|
|
/* Set the Capture Compare Register value */ |
|
TIMx->CCR2 = OC_Config->Pulse; |
|
|
|
/* Write to TIMx CCER */ |
|
TIMx->CCER = tmpccer; |
|
} |
|
|
|
/** |
|
* @brief Timer Output Compare 3 configuration |
|
* @param TIMx to select the TIM peripheral |
|
* @param OC_Config The output configuration structure |
|
* @retval None |
|
*/ |
|
static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
|
{ |
|
uint32_t tmpccmrx; |
|
uint32_t tmpccer; |
|
uint32_t tmpcr2; |
|
|
|
/* Disable the Channel 3: Reset the CC2E Bit */ |
|
TIMx->CCER &= ~TIM_CCER_CC3E; |
|
|
|
/* Get the TIMx CCER register value */ |
|
tmpccer = TIMx->CCER; |
|
/* Get the TIMx CR2 register value */ |
|
tmpcr2 = TIMx->CR2; |
|
|
|
/* Get the TIMx CCMR2 register value */ |
|
tmpccmrx = TIMx->CCMR2; |
|
|
|
/* Reset the Output Compare mode and Capture/Compare selection Bits */ |
|
tmpccmrx &= ~TIM_CCMR2_OC3M; |
|
tmpccmrx &= ~TIM_CCMR2_CC3S; |
|
/* Select the Output Compare Mode */ |
|
tmpccmrx |= OC_Config->OCMode; |
|
|
|
/* Reset the Output Polarity level */ |
|
tmpccer &= ~TIM_CCER_CC3P; |
|
/* Set the Output Compare Polarity */ |
|
tmpccer |= (OC_Config->OCPolarity << 8U); |
|
|
|
if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3)) |
|
{ |
|
assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); |
|
|
|
/* Reset the Output N Polarity level */ |
|
tmpccer &= ~TIM_CCER_CC3NP; |
|
/* Set the Output N Polarity */ |
|
tmpccer |= (OC_Config->OCNPolarity << 8U); |
|
/* Reset the Output N State */ |
|
tmpccer &= ~TIM_CCER_CC3NE; |
|
} |
|
|
|
if (IS_TIM_BREAK_INSTANCE(TIMx)) |
|
{ |
|
/* Check parameters */ |
|
assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); |
|
assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
|
|
|
/* Reset the Output Compare and Output Compare N IDLE State */ |
|
tmpcr2 &= ~TIM_CR2_OIS3; |
|
tmpcr2 &= ~TIM_CR2_OIS3N; |
|
/* Set the Output Idle state */ |
|
tmpcr2 |= (OC_Config->OCIdleState << 4U); |
|
/* Set the Output N Idle state */ |
|
tmpcr2 |= (OC_Config->OCNIdleState << 4U); |
|
} |
|
|
|
/* Write to TIMx CR2 */ |
|
TIMx->CR2 = tmpcr2; |
|
|
|
/* Write to TIMx CCMR2 */ |
|
TIMx->CCMR2 = tmpccmrx; |
|
|
|
/* Set the Capture Compare Register value */ |
|
TIMx->CCR3 = OC_Config->Pulse; |
|
|
|
/* Write to TIMx CCER */ |
|
TIMx->CCER = tmpccer; |
|
} |
|
|
|
/** |
|
* @brief Timer Output Compare 4 configuration |
|
* @param TIMx to select the TIM peripheral |
|
* @param OC_Config The output configuration structure |
|
* @retval None |
|
*/ |
|
static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
|
{ |
|
uint32_t tmpccmrx; |
|
uint32_t tmpccer; |
|
uint32_t tmpcr2; |
|
|
|
/* Disable the Channel 4: Reset the CC4E Bit */ |
|
TIMx->CCER &= ~TIM_CCER_CC4E; |
|
|
|
/* Get the TIMx CCER register value */ |
|
tmpccer = TIMx->CCER; |
|
/* Get the TIMx CR2 register value */ |
|
tmpcr2 = TIMx->CR2; |
|
|
|
/* Get the TIMx CCMR2 register value */ |
|
tmpccmrx = TIMx->CCMR2; |
|
|
|
/* Reset the Output Compare mode and Capture/Compare selection Bits */ |
|
tmpccmrx &= ~TIM_CCMR2_OC4M; |
|
tmpccmrx &= ~TIM_CCMR2_CC4S; |
|
|
|
/* Select the Output Compare Mode */ |
|
tmpccmrx |= (OC_Config->OCMode << 8U); |
|
|
|
/* Reset the Output Polarity level */ |
|
tmpccer &= ~TIM_CCER_CC4P; |
|
/* Set the Output Compare Polarity */ |
|
tmpccer |= (OC_Config->OCPolarity << 12U); |
|
|
|
if (IS_TIM_BREAK_INSTANCE(TIMx)) |
|
{ |
|
/* Check parameters */ |
|
assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
|
|
|
/* Reset the Output Compare IDLE State */ |
|
tmpcr2 &= ~TIM_CR2_OIS4; |
|
|
|
/* Set the Output Idle state */ |
|
tmpcr2 |= (OC_Config->OCIdleState << 6U); |
|
} |
|
|
|
/* Write to TIMx CR2 */ |
|
TIMx->CR2 = tmpcr2; |
|
|
|
/* Write to TIMx CCMR2 */ |
|
TIMx->CCMR2 = tmpccmrx; |
|
|
|
/* Set the Capture Compare Register value */ |
|
TIMx->CCR4 = OC_Config->Pulse; |
|
|
|
/* Write to TIMx CCER */ |
|
TIMx->CCER = tmpccer; |
|
} |
|
|
|
/** |
|
* @brief Slave Timer configuration function |
|
* @param htim TIM handle |
|
* @param sSlaveConfig Slave timer configuration |
|
* @retval None |
|
*/ |
|
static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
|
TIM_SlaveConfigTypeDef *sSlaveConfig) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
uint32_t tmpsmcr; |
|
uint32_t tmpccmr1; |
|
uint32_t tmpccer; |
|
|
|
/* Get the TIMx SMCR register value */ |
|
tmpsmcr = htim->Instance->SMCR; |
|
|
|
/* Reset the Trigger Selection Bits */ |
|
tmpsmcr &= ~TIM_SMCR_TS; |
|
/* Set the Input Trigger source */ |
|
tmpsmcr |= sSlaveConfig->InputTrigger; |
|
|
|
/* Reset the slave mode Bits */ |
|
tmpsmcr &= ~TIM_SMCR_SMS; |
|
/* Set the slave mode */ |
|
tmpsmcr |= sSlaveConfig->SlaveMode; |
|
|
|
/* Write to TIMx SMCR */ |
|
htim->Instance->SMCR = tmpsmcr; |
|
|
|
/* Configure the trigger prescaler, filter, and polarity */ |
|
switch (sSlaveConfig->InputTrigger) |
|
{ |
|
case TIM_TS_ETRF: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); |
|
assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
|
assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
|
/* Configure the ETR Trigger source */ |
|
TIM_ETR_SetConfig(htim->Instance, |
|
sSlaveConfig->TriggerPrescaler, |
|
sSlaveConfig->TriggerPolarity, |
|
sSlaveConfig->TriggerFilter); |
|
break; |
|
} |
|
|
|
case TIM_TS_TI1F_ED: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
|
|
|
if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Disable the Channel 1: Reset the CC1E Bit */ |
|
tmpccer = htim->Instance->CCER; |
|
htim->Instance->CCER &= ~TIM_CCER_CC1E; |
|
tmpccmr1 = htim->Instance->CCMR1; |
|
|
|
/* Set the filter */ |
|
tmpccmr1 &= ~TIM_CCMR1_IC1F; |
|
tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); |
|
|
|
/* Write to TIMx CCMR1 and CCER registers */ |
|
htim->Instance->CCMR1 = tmpccmr1; |
|
htim->Instance->CCER = tmpccer; |
|
break; |
|
} |
|
|
|
case TIM_TS_TI1FP1: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
|
assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
|
|
|
/* Configure TI1 Filter and Polarity */ |
|
TIM_TI1_ConfigInputStage(htim->Instance, |
|
sSlaveConfig->TriggerPolarity, |
|
sSlaveConfig->TriggerFilter); |
|
break; |
|
} |
|
|
|
case TIM_TS_TI2FP2: |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
|
assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
|
assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
|
|
|
/* Configure TI2 Filter and Polarity */ |
|
TIM_TI2_ConfigInputStage(htim->Instance, |
|
sSlaveConfig->TriggerPolarity, |
|
sSlaveConfig->TriggerFilter); |
|
break; |
|
} |
|
|
|
case TIM_TS_ITR0: |
|
case TIM_TS_ITR1: |
|
case TIM_TS_ITR2: |
|
case TIM_TS_ITR3: |
|
{ |
|
/* Check the parameter */ |
|
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
|
break; |
|
} |
|
|
|
default: |
|
status = HAL_ERROR; |
|
break; |
|
} |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Configure the TI1 as Input. |
|
* @param TIMx to select the TIM peripheral. |
|
* @param TIM_ICPolarity The Input Polarity. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ICPOLARITY_RISING |
|
* @arg TIM_ICPOLARITY_FALLING |
|
* @arg TIM_ICPOLARITY_BOTHEDGE |
|
* @param TIM_ICSelection specifies the input to be used. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. |
|
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. |
|
* @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. |
|
* @param TIM_ICFilter Specifies the Input Capture Filter. |
|
* This parameter must be a value between 0x00 and 0x0F. |
|
* @retval None |
|
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 |
|
* (on channel2 path) is used as the input signal. Therefore CCMR1 must be |
|
* protected against un-initialized filter and polarity values. |
|
*/ |
|
void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
|
uint32_t TIM_ICFilter) |
|
{ |
|
uint32_t tmpccmr1; |
|
uint32_t tmpccer; |
|
|
|
/* Disable the Channel 1: Reset the CC1E Bit */ |
|
TIMx->CCER &= ~TIM_CCER_CC1E; |
|
tmpccmr1 = TIMx->CCMR1; |
|
tmpccer = TIMx->CCER; |
|
|
|
/* Select the Input */ |
|
if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) |
|
{ |
|
tmpccmr1 &= ~TIM_CCMR1_CC1S; |
|
tmpccmr1 |= TIM_ICSelection; |
|
} |
|
else |
|
{ |
|
tmpccmr1 |= TIM_CCMR1_CC1S_0; |
|
} |
|
|
|
/* Set the filter */ |
|
tmpccmr1 &= ~TIM_CCMR1_IC1F; |
|
tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); |
|
|
|
/* Select the Polarity and set the CC1E Bit */ |
|
tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
|
tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); |
|
|
|
/* Write to TIMx CCMR1 and CCER registers */ |
|
TIMx->CCMR1 = tmpccmr1; |
|
TIMx->CCER = tmpccer; |
|
} |
|
|
|
/** |
|
* @brief Configure the Polarity and Filter for TI1. |
|
* @param TIMx to select the TIM peripheral. |
|
* @param TIM_ICPolarity The Input Polarity. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ICPOLARITY_RISING |
|
* @arg TIM_ICPOLARITY_FALLING |
|
* @arg TIM_ICPOLARITY_BOTHEDGE |
|
* @param TIM_ICFilter Specifies the Input Capture Filter. |
|
* This parameter must be a value between 0x00 and 0x0F. |
|
* @retval None |
|
*/ |
|
static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
|
{ |
|
uint32_t tmpccmr1; |
|
uint32_t tmpccer; |
|
|
|
/* Disable the Channel 1: Reset the CC1E Bit */ |
|
tmpccer = TIMx->CCER; |
|
TIMx->CCER &= ~TIM_CCER_CC1E; |
|
tmpccmr1 = TIMx->CCMR1; |
|
|
|
/* Set the filter */ |
|
tmpccmr1 &= ~TIM_CCMR1_IC1F; |
|
tmpccmr1 |= (TIM_ICFilter << 4U); |
|
|
|
/* Select the Polarity and set the CC1E Bit */ |
|
tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
|
tmpccer |= TIM_ICPolarity; |
|
|
|
/* Write to TIMx CCMR1 and CCER registers */ |
|
TIMx->CCMR1 = tmpccmr1; |
|
TIMx->CCER = tmpccer; |
|
} |
|
|
|
/** |
|
* @brief Configure the TI2 as Input. |
|
* @param TIMx to select the TIM peripheral |
|
* @param TIM_ICPolarity The Input Polarity. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ICPOLARITY_RISING |
|
* @arg TIM_ICPOLARITY_FALLING |
|
* @arg TIM_ICPOLARITY_BOTHEDGE |
|
* @param TIM_ICSelection specifies the input to be used. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. |
|
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. |
|
* @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. |
|
* @param TIM_ICFilter Specifies the Input Capture Filter. |
|
* This parameter must be a value between 0x00 and 0x0F. |
|
* @retval None |
|
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 |
|
* (on channel1 path) is used as the input signal. Therefore CCMR1 must be |
|
* protected against un-initialized filter and polarity values. |
|
*/ |
|
static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
|
uint32_t TIM_ICFilter) |
|
{ |
|
uint32_t tmpccmr1; |
|
uint32_t tmpccer; |
|
|
|
/* Disable the Channel 2: Reset the CC2E Bit */ |
|
TIMx->CCER &= ~TIM_CCER_CC2E; |
|
tmpccmr1 = TIMx->CCMR1; |
|
tmpccer = TIMx->CCER; |
|
|
|
/* Select the Input */ |
|
tmpccmr1 &= ~TIM_CCMR1_CC2S; |
|
tmpccmr1 |= (TIM_ICSelection << 8U); |
|
|
|
/* Set the filter */ |
|
tmpccmr1 &= ~TIM_CCMR1_IC2F; |
|
tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); |
|
|
|
/* Select the Polarity and set the CC2E Bit */ |
|
tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
|
tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); |
|
|
|
/* Write to TIMx CCMR1 and CCER registers */ |
|
TIMx->CCMR1 = tmpccmr1 ; |
|
TIMx->CCER = tmpccer; |
|
} |
|
|
|
/** |
|
* @brief Configure the Polarity and Filter for TI2. |
|
* @param TIMx to select the TIM peripheral. |
|
* @param TIM_ICPolarity The Input Polarity. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ICPOLARITY_RISING |
|
* @arg TIM_ICPOLARITY_FALLING |
|
* @arg TIM_ICPOLARITY_BOTHEDGE |
|
* @param TIM_ICFilter Specifies the Input Capture Filter. |
|
* This parameter must be a value between 0x00 and 0x0F. |
|
* @retval None |
|
*/ |
|
static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
|
{ |
|
uint32_t tmpccmr1; |
|
uint32_t tmpccer; |
|
|
|
/* Disable the Channel 2: Reset the CC2E Bit */ |
|
TIMx->CCER &= ~TIM_CCER_CC2E; |
|
tmpccmr1 = TIMx->CCMR1; |
|
tmpccer = TIMx->CCER; |
|
|
|
/* Set the filter */ |
|
tmpccmr1 &= ~TIM_CCMR1_IC2F; |
|
tmpccmr1 |= (TIM_ICFilter << 12U); |
|
|
|
/* Select the Polarity and set the CC2E Bit */ |
|
tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
|
tmpccer |= (TIM_ICPolarity << 4U); |
|
|
|
/* Write to TIMx CCMR1 and CCER registers */ |
|
TIMx->CCMR1 = tmpccmr1 ; |
|
TIMx->CCER = tmpccer; |
|
} |
|
|
|
/** |
|
* @brief Configure the TI3 as Input. |
|
* @param TIMx to select the TIM peripheral |
|
* @param TIM_ICPolarity The Input Polarity. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ICPOLARITY_RISING |
|
* @arg TIM_ICPOLARITY_FALLING |
|
* @arg TIM_ICPOLARITY_BOTHEDGE |
|
* @param TIM_ICSelection specifies the input to be used. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. |
|
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. |
|
* @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. |
|
* @param TIM_ICFilter Specifies the Input Capture Filter. |
|
* This parameter must be a value between 0x00 and 0x0F. |
|
* @retval None |
|
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 |
|
* (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
|
* protected against un-initialized filter and polarity values. |
|
*/ |
|
static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
|
uint32_t TIM_ICFilter) |
|
{ |
|
uint32_t tmpccmr2; |
|
uint32_t tmpccer; |
|
|
|
/* Disable the Channel 3: Reset the CC3E Bit */ |
|
TIMx->CCER &= ~TIM_CCER_CC3E; |
|
tmpccmr2 = TIMx->CCMR2; |
|
tmpccer = TIMx->CCER; |
|
|
|
/* Select the Input */ |
|
tmpccmr2 &= ~TIM_CCMR2_CC3S; |
|
tmpccmr2 |= TIM_ICSelection; |
|
|
|
/* Set the filter */ |
|
tmpccmr2 &= ~TIM_CCMR2_IC3F; |
|
tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); |
|
|
|
/* Select the Polarity and set the CC3E Bit */ |
|
tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); |
|
tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); |
|
|
|
/* Write to TIMx CCMR2 and CCER registers */ |
|
TIMx->CCMR2 = tmpccmr2; |
|
TIMx->CCER = tmpccer; |
|
} |
|
|
|
/** |
|
* @brief Configure the TI4 as Input. |
|
* @param TIMx to select the TIM peripheral |
|
* @param TIM_ICPolarity The Input Polarity. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ICPOLARITY_RISING |
|
* @arg TIM_ICPOLARITY_FALLING |
|
* @arg TIM_ICPOLARITY_BOTHEDGE |
|
* @param TIM_ICSelection specifies the input to be used. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. |
|
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. |
|
* @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. |
|
* @param TIM_ICFilter Specifies the Input Capture Filter. |
|
* This parameter must be a value between 0x00 and 0x0F. |
|
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 |
|
* (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
|
* protected against un-initialized filter and polarity values. |
|
* @retval None |
|
*/ |
|
static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
|
uint32_t TIM_ICFilter) |
|
{ |
|
uint32_t tmpccmr2; |
|
uint32_t tmpccer; |
|
|
|
/* Disable the Channel 4: Reset the CC4E Bit */ |
|
TIMx->CCER &= ~TIM_CCER_CC4E; |
|
tmpccmr2 = TIMx->CCMR2; |
|
tmpccer = TIMx->CCER; |
|
|
|
/* Select the Input */ |
|
tmpccmr2 &= ~TIM_CCMR2_CC4S; |
|
tmpccmr2 |= (TIM_ICSelection << 8U); |
|
|
|
/* Set the filter */ |
|
tmpccmr2 &= ~TIM_CCMR2_IC4F; |
|
tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); |
|
|
|
/* Select the Polarity and set the CC4E Bit */ |
|
tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); |
|
tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); |
|
|
|
/* Write to TIMx CCMR2 and CCER registers */ |
|
TIMx->CCMR2 = tmpccmr2; |
|
TIMx->CCER = tmpccer ; |
|
} |
|
|
|
/** |
|
* @brief Selects the Input Trigger source |
|
* @param TIMx to select the TIM peripheral |
|
* @param InputTriggerSource The Input Trigger source. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_TS_ITR0: Internal Trigger 0 |
|
* @arg TIM_TS_ITR1: Internal Trigger 1 |
|
* @arg TIM_TS_ITR2: Internal Trigger 2 |
|
* @arg TIM_TS_ITR3: Internal Trigger 3 |
|
* @arg TIM_TS_TI1F_ED: TI1 Edge Detector |
|
* @arg TIM_TS_TI1FP1: Filtered Timer Input 1 |
|
* @arg TIM_TS_TI2FP2: Filtered Timer Input 2 |
|
* @arg TIM_TS_ETRF: External Trigger input |
|
* @retval None |
|
*/ |
|
static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) |
|
{ |
|
uint32_t tmpsmcr; |
|
|
|
/* Get the TIMx SMCR register value */ |
|
tmpsmcr = TIMx->SMCR; |
|
/* Reset the TS Bits */ |
|
tmpsmcr &= ~TIM_SMCR_TS; |
|
/* Set the Input Trigger source and the slave mode*/ |
|
tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); |
|
/* Write to TIMx SMCR */ |
|
TIMx->SMCR = tmpsmcr; |
|
} |
|
/** |
|
* @brief Configures the TIMx External Trigger (ETR). |
|
* @param TIMx to select the TIM peripheral |
|
* @param TIM_ExtTRGPrescaler The external Trigger Prescaler. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. |
|
* @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. |
|
* @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. |
|
* @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. |
|
* @param TIM_ExtTRGPolarity The external Trigger Polarity. |
|
* This parameter can be one of the following values: |
|
* @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. |
|
* @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. |
|
* @param ExtTRGFilter External Trigger Filter. |
|
* This parameter must be a value between 0x00 and 0x0F |
|
* @retval None |
|
*/ |
|
void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
|
uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) |
|
{ |
|
uint32_t tmpsmcr; |
|
|
|
tmpsmcr = TIMx->SMCR; |
|
|
|
/* Reset the ETR Bits */ |
|
tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
|
|
|
/* Set the Prescaler, the Filter value and the Polarity */ |
|
tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); |
|
|
|
/* Write to TIMx SMCR */ |
|
TIMx->SMCR = tmpsmcr; |
|
} |
|
|
|
/** |
|
* @brief Enables or disables the TIM Capture Compare Channel x. |
|
* @param TIMx to select the TIM peripheral |
|
* @param Channel specifies the TIM Channel |
|
* This parameter can be one of the following values: |
|
* @arg TIM_CHANNEL_1: TIM Channel 1 |
|
* @arg TIM_CHANNEL_2: TIM Channel 2 |
|
* @arg TIM_CHANNEL_3: TIM Channel 3 |
|
* @arg TIM_CHANNEL_4: TIM Channel 4 |
|
* @param ChannelState specifies the TIM Channel CCxE bit new state. |
|
* This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. |
|
* @retval None |
|
*/ |
|
void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) |
|
{ |
|
uint32_t tmp; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_TIM_CC1_INSTANCE(TIMx)); |
|
assert_param(IS_TIM_CHANNELS(Channel)); |
|
|
|
tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ |
|
|
|
/* Reset the CCxE Bit */ |
|
TIMx->CCER &= ~tmp; |
|
|
|
/* Set or reset the CCxE Bit */ |
|
TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ |
|
} |
|
|
|
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
/** |
|
* @brief Reset interrupt callbacks to the legacy weak callbacks. |
|
* @param htim pointer to a TIM_HandleTypeDef structure that contains |
|
* the configuration information for TIM module. |
|
* @retval None |
|
*/ |
|
void TIM_ResetCallback(TIM_HandleTypeDef *htim) |
|
{ |
|
/* Reset the TIM callback to the legacy weak callbacks */ |
|
htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
|
htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
|
htim->TriggerCallback = HAL_TIM_TriggerCallback; |
|
htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
|
htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
|
htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
|
htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
|
htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
|
htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
|
htim->ErrorCallback = HAL_TIM_ErrorCallback; |
|
htim->CommutationCallback = HAL_TIMEx_CommutCallback; |
|
htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; |
|
htim->BreakCallback = HAL_TIMEx_BreakCallback; |
|
} |
|
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
#endif /* HAL_TIM_MODULE_ENABLED */ |
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* @} |
|
*/
|
|
|